/* * * Copyright (c) 2020-2023 Project CHIP Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * mbedTLS based implementation of CHIP crypto primitives */ #include "CHIPCryptoPALmbedTLS.h" #include "CHIPCryptoPAL.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace chip { namespace Crypto { typedef struct { bool mInitialized; bool mDRBGSeeded; mbedtls_ctr_drbg_context mDRBGCtxt; mbedtls_entropy_context mEntropy; } EntropyContext; static EntropyContext gsEntropyContext; static bool _isValidTagLength(size_t tag_length) { if (tag_length == 8 || tag_length == 12 || tag_length == 16) { return true; } return false; } CHIP_ERROR AES_CCM_encrypt(const uint8_t * plaintext, size_t plaintext_length, const uint8_t * aad, size_t aad_length, const Aes128KeyHandle & key, const uint8_t * nonce, size_t nonce_length, uint8_t * ciphertext, uint8_t * tag, size_t tag_length) { CHIP_ERROR error = CHIP_NO_ERROR; int result = 1; mbedtls_ccm_context context; mbedtls_ccm_init(&context); VerifyOrExit(plaintext != nullptr || plaintext_length == 0, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(ciphertext != nullptr || plaintext_length == 0, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(nonce != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(nonce_length > 0, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(tag != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(_isValidTagLength(tag_length), error = CHIP_ERROR_INVALID_ARGUMENT); if (aad_length > 0) { VerifyOrExit(aad != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); } // Size of key is expressed in bits, hence the multiplication by 8. result = mbedtls_ccm_setkey(&context, MBEDTLS_CIPHER_ID_AES, key.As(), sizeof(Symmetric128BitsKeyByteArray) * 8); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); // Encrypt result = mbedtls_ccm_encrypt_and_tag(&context, plaintext_length, Uint8::to_const_uchar(nonce), nonce_length, Uint8::to_const_uchar(aad), aad_length, Uint8::to_const_uchar(plaintext), Uint8::to_uchar(ciphertext), Uint8::to_uchar(tag), tag_length); _log_mbedTLS_error(result); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); exit: mbedtls_ccm_free(&context); return error; } CHIP_ERROR AES_CCM_decrypt(const uint8_t * ciphertext, size_t ciphertext_len, const uint8_t * aad, size_t aad_len, const uint8_t * tag, size_t tag_length, const Aes128KeyHandle & key, const uint8_t * nonce, size_t nonce_length, uint8_t * plaintext) { CHIP_ERROR error = CHIP_NO_ERROR; int result = 1; mbedtls_ccm_context context; mbedtls_ccm_init(&context); VerifyOrExit(plaintext != nullptr || ciphertext_len == 0, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(ciphertext != nullptr || ciphertext_len == 0, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(tag != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(_isValidTagLength(tag_length), error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(nonce != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(nonce_length > 0, error = CHIP_ERROR_INVALID_ARGUMENT); if (aad_len > 0) { VerifyOrExit(aad != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); } // Size of key is expressed in bits, hence the multiplication by 8. result = mbedtls_ccm_setkey(&context, MBEDTLS_CIPHER_ID_AES, key.As(), sizeof(Symmetric128BitsKeyByteArray) * 8); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); // Decrypt result = mbedtls_ccm_auth_decrypt(&context, ciphertext_len, Uint8::to_const_uchar(nonce), nonce_length, Uint8::to_const_uchar(aad), aad_len, Uint8::to_const_uchar(ciphertext), Uint8::to_uchar(plaintext), Uint8::to_const_uchar(tag), tag_length); _log_mbedTLS_error(result); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); exit: mbedtls_ccm_free(&context); return error; } CHIP_ERROR Hash_SHA256(const uint8_t * data, const size_t data_length, uint8_t * out_buffer) { // zero data length hash is supported. VerifyOrReturnError(data != nullptr, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) const int result = mbedtls_sha256(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer), 0); #else const int result = mbedtls_sha256_ret(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer), 0); #endif VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); return CHIP_NO_ERROR; } CHIP_ERROR Hash_SHA1(const uint8_t * data, const size_t data_length, uint8_t * out_buffer) { // zero data length hash is supported. VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) const int result = mbedtls_sha1(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer)); #else const int result = mbedtls_sha1_ret(Uint8::to_const_uchar(data), data_length, Uint8::to_uchar(out_buffer)); #endif VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); return CHIP_NO_ERROR; } static_assert(kMAX_Hash_SHA256_Context_Size >= sizeof(mbedtls_sha256_context), "kMAX_Hash_SHA256_Context_Size is too small for the size of underlying mbedtls_sha256_context"); static inline mbedtls_sha256_context * to_inner_hash_sha256_context(HashSHA256OpaqueContext * context) { return SafePointerCast(context); } Hash_SHA256_stream::Hash_SHA256_stream() { mbedtls_sha256_context * context = to_inner_hash_sha256_context(&mContext); mbedtls_sha256_init(context); } Hash_SHA256_stream::~Hash_SHA256_stream() { Clear(); } CHIP_ERROR Hash_SHA256_stream::Begin() { mbedtls_sha256_context * const context = to_inner_hash_sha256_context(&mContext); #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) const int result = mbedtls_sha256_starts(context, 0); #else const int result = mbedtls_sha256_starts_ret(context, 0); #endif VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); return CHIP_NO_ERROR; } CHIP_ERROR Hash_SHA256_stream::AddData(const ByteSpan data) { mbedtls_sha256_context * const context = to_inner_hash_sha256_context(&mContext); #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) const int result = mbedtls_sha256_update(context, Uint8::to_const_uchar(data.data()), data.size()); #else const int result = mbedtls_sha256_update_ret(context, Uint8::to_const_uchar(data.data()), data.size()); #endif VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); return CHIP_NO_ERROR; } CHIP_ERROR Hash_SHA256_stream::GetDigest(MutableByteSpan & out_buffer) { mbedtls_sha256_context * context = to_inner_hash_sha256_context(&mContext); // Back-up context as we are about to finalize the hash to extract digest. mbedtls_sha256_context previous_ctx; mbedtls_sha256_init(&previous_ctx); mbedtls_sha256_clone(&previous_ctx, context); // Pad + compute digest, then finalize context. It is restored next line to continue. CHIP_ERROR result = Finish(out_buffer); // Restore context prior to finalization. mbedtls_sha256_clone(context, &previous_ctx); mbedtls_sha256_free(&previous_ctx); return result; } CHIP_ERROR Hash_SHA256_stream::Finish(MutableByteSpan & out_buffer) { VerifyOrReturnError(out_buffer.size() >= kSHA256_Hash_Length, CHIP_ERROR_BUFFER_TOO_SMALL); mbedtls_sha256_context * const context = to_inner_hash_sha256_context(&mContext); #if (MBEDTLS_VERSION_NUMBER >= 0x03000000) const int result = mbedtls_sha256_finish(context, Uint8::to_uchar(out_buffer.data())); #else const int result = mbedtls_sha256_finish_ret(context, Uint8::to_uchar(out_buffer.data())); #endif VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); out_buffer = out_buffer.SubSpan(0, kSHA256_Hash_Length); return CHIP_NO_ERROR; } void Hash_SHA256_stream::Clear() { mbedtls_sha256_context * context = to_inner_hash_sha256_context(&mContext); mbedtls_sha256_free(context); mbedtls_platform_zeroize(this, sizeof(*this)); } CHIP_ERROR HKDF_sha::HKDF_SHA256(const uint8_t * secret, const size_t secret_length, const uint8_t * salt, const size_t salt_length, const uint8_t * info, const size_t info_length, uint8_t * out_buffer, size_t out_length) { VerifyOrReturnError(secret != nullptr, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(secret_length > 0, CHIP_ERROR_INVALID_ARGUMENT); // Salt is optional if (salt_length > 0) { VerifyOrReturnError(salt != nullptr, CHIP_ERROR_INVALID_ARGUMENT); } VerifyOrReturnError(info_length > 0, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(info != nullptr, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(out_length > 0, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); const mbedtls_md_info_t * const md = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256); VerifyOrReturnError(md != nullptr, CHIP_ERROR_INTERNAL); const int result = mbedtls_hkdf(md, Uint8::to_const_uchar(salt), salt_length, Uint8::to_const_uchar(secret), secret_length, Uint8::to_const_uchar(info), info_length, Uint8::to_uchar(out_buffer), out_length); _log_mbedTLS_error(result); VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); return CHIP_NO_ERROR; } CHIP_ERROR HMAC_sha::HMAC_SHA256(const uint8_t * key, size_t key_length, const uint8_t * message, size_t message_length, uint8_t * out_buffer, size_t out_length) { VerifyOrReturnError(key != nullptr, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(key_length > 0, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(message != nullptr, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(message_length > 0, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(out_length >= kSHA256_Hash_Length, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); const mbedtls_md_info_t * const md = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256); VerifyOrReturnError(md != nullptr, CHIP_ERROR_INTERNAL); const int result = mbedtls_md_hmac(md, Uint8::to_const_uchar(key), key_length, Uint8::to_const_uchar(message), message_length, out_buffer); _log_mbedTLS_error(result); VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); return CHIP_NO_ERROR; } CHIP_ERROR HMAC_sha::HMAC_SHA256(const Hmac128KeyHandle & key, const uint8_t * message, size_t message_length, uint8_t * out_buffer, size_t out_length) { return HMAC_SHA256(key.As(), sizeof(Symmetric128BitsKeyByteArray), message, message_length, out_buffer, out_length); } CHIP_ERROR PBKDF2_sha256::pbkdf2_sha256(const uint8_t * password, size_t plen, const uint8_t * salt, size_t slen, unsigned int iteration_count, uint32_t key_length, uint8_t * output) { CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; #if !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000 const mbedtls_md_info_t * md_info; mbedtls_md_context_t md_ctxt; constexpr int use_hmac = 1; bool free_md_ctxt = false; #endif // !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000 VerifyOrExit(password != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(plen > 0, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(salt != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(slen >= kSpake2p_Min_PBKDF_Salt_Length, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(slen <= kSpake2p_Max_PBKDF_Salt_Length, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(key_length > 0, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(output != nullptr, error = CHIP_ERROR_INVALID_ARGUMENT); #if !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000 md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA256); VerifyOrExit(md_info != nullptr, error = CHIP_ERROR_INTERNAL); mbedtls_md_init(&md_ctxt); free_md_ctxt = true; result = mbedtls_md_setup(&md_ctxt, md_info, use_hmac); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_pkcs5_pbkdf2_hmac(&md_ctxt, Uint8::to_const_uchar(password), plen, Uint8::to_const_uchar(salt), slen, iteration_count, key_length, Uint8::to_uchar(output)); #else result = mbedtls_pkcs5_pbkdf2_hmac_ext(MBEDTLS_MD_SHA256, Uint8::to_const_uchar(password), plen, Uint8::to_const_uchar(salt), slen, iteration_count, key_length, Uint8::to_uchar(output)); #endif // !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000 VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); exit: _log_mbedTLS_error(result); #if !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000 if (free_md_ctxt) { mbedtls_md_free(&md_ctxt); } #endif // !defined(MBEDTLS_DEPRECATED_REMOVED) || MBEDTLS_VERSION_NUMBER < 0x03030000 return error; } static EntropyContext * get_entropy_context() { if (!gsEntropyContext.mInitialized) { mbedtls_entropy_init(&gsEntropyContext.mEntropy); mbedtls_ctr_drbg_init(&gsEntropyContext.mDRBGCtxt); gsEntropyContext.mInitialized = true; } return &gsEntropyContext; } static mbedtls_ctr_drbg_context * get_drbg_context() { EntropyContext * const context = get_entropy_context(); mbedtls_ctr_drbg_context * const drbgCtxt = &context->mDRBGCtxt; if (!context->mDRBGSeeded) { const int status = mbedtls_ctr_drbg_seed(drbgCtxt, mbedtls_entropy_func, &context->mEntropy, nullptr, 0); if (status != 0) { _log_mbedTLS_error(status); return nullptr; } context->mDRBGSeeded = true; } return drbgCtxt; } CHIP_ERROR add_entropy_source(entropy_source fn_source, void * p_source, size_t threshold) { VerifyOrReturnError(fn_source != nullptr, CHIP_ERROR_INVALID_ARGUMENT); EntropyContext * const entropy_ctxt = get_entropy_context(); VerifyOrReturnError(entropy_ctxt != nullptr, CHIP_ERROR_INTERNAL); const int result = mbedtls_entropy_add_source(&entropy_ctxt->mEntropy, fn_source, p_source, threshold, MBEDTLS_ENTROPY_SOURCE_STRONG); VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); return CHIP_NO_ERROR; } CHIP_ERROR DRBG_get_bytes(uint8_t * out_buffer, const size_t out_length) { VerifyOrReturnError(out_buffer != nullptr, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(out_length > 0, CHIP_ERROR_INVALID_ARGUMENT); mbedtls_ctr_drbg_context * const drbg_ctxt = get_drbg_context(); VerifyOrReturnError(drbg_ctxt != nullptr, CHIP_ERROR_INTERNAL); const int result = mbedtls_ctr_drbg_random(drbg_ctxt, Uint8::to_uchar(out_buffer), out_length); VerifyOrReturnError(result == 0, CHIP_ERROR_INTERNAL); return CHIP_NO_ERROR; } static int CryptoRNG(void * ctxt, uint8_t * out_buffer, size_t out_length) { return (chip::Crypto::DRBG_get_bytes(out_buffer, out_length) == CHIP_NO_ERROR) ? 0 : 1; } static inline mbedtls_ecp_keypair * to_keypair(P256KeypairContext * context) { return SafePointerCast(context); } static inline const mbedtls_ecp_keypair * to_const_keypair(const P256KeypairContext * context) { return SafePointerCast(context); } CHIP_ERROR P256Keypair::ECDSA_sign_msg(const uint8_t * msg, const size_t msg_length, P256ECDSASignature & out_signature) const { VerifyOrReturnError(mInitialized, CHIP_ERROR_UNINITIALIZED); VerifyOrReturnError((msg != nullptr) && (msg_length > 0), CHIP_ERROR_INVALID_ARGUMENT); uint8_t digest[kSHA256_Hash_Length]; memset(&digest[0], 0, sizeof(digest)); ReturnErrorOnFailure(Hash_SHA256(msg, msg_length, &digest[0])); #if defined(MBEDTLS_ECDSA_C) CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; mbedtls_mpi r, s; mbedtls_mpi_init(&r); mbedtls_mpi_init(&s); const mbedtls_ecp_keypair * keypair = to_const_keypair(&mKeypair); mbedtls_ecdsa_context ecdsa_ctxt; mbedtls_ecdsa_init(&ecdsa_ctxt); result = mbedtls_ecdsa_from_keypair(&ecdsa_ctxt, keypair); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_ecdsa_sign(&ecdsa_ctxt.CHIP_CRYPTO_PAL_PRIVATE(grp), &r, &s, &ecdsa_ctxt.CHIP_CRYPTO_PAL_PRIVATE(d), Uint8::to_const_uchar(digest), sizeof(digest), CryptoRNG, nullptr); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); VerifyOrExit((mbedtls_mpi_size(&r) <= kP256_FE_Length) && (mbedtls_mpi_size(&s) <= kP256_FE_Length), error = CHIP_ERROR_INTERNAL); // Concatenate r and s to output. Sizes were checked above. result = mbedtls_mpi_write_binary(&r, out_signature.Bytes() + 0u, kP256_FE_Length); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_mpi_write_binary(&s, out_signature.Bytes() + kP256_FE_Length, kP256_FE_Length); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); VerifyOrExit(out_signature.SetLength(kP256_ECDSA_Signature_Length_Raw) == CHIP_NO_ERROR, error = CHIP_ERROR_INTERNAL); exit: keypair = nullptr; mbedtls_ecdsa_free(&ecdsa_ctxt); mbedtls_mpi_free(&s); mbedtls_mpi_free(&r); _log_mbedTLS_error(result); return error; #else return CHIP_ERROR_NOT_IMPLEMENTED; #endif } CHIP_ERROR P256PublicKey::ECDSA_validate_msg_signature(const uint8_t * msg, const size_t msg_length, const P256ECDSASignature & signature) const { #if defined(MBEDTLS_ECDSA_C) VerifyOrReturnError((msg != nullptr) && (msg_length > 0), CHIP_ERROR_INVALID_ARGUMENT); uint8_t digest[kSHA256_Hash_Length]; memset(&digest[0], 0, sizeof(digest)); ReturnErrorOnFailure(Hash_SHA256(msg, msg_length, &digest[0])); return ECDSA_validate_hash_signature(&digest[0], sizeof(digest), signature); #else return CHIP_ERROR_NOT_IMPLEMENTED; #endif } CHIP_ERROR P256PublicKey::ECDSA_validate_hash_signature(const uint8_t * hash, const size_t hash_length, const P256ECDSASignature & signature) const { #if defined(MBEDTLS_ECDSA_C) VerifyOrReturnError(hash != nullptr, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(hash_length == kSHA256_Hash_Length, CHIP_ERROR_INVALID_ARGUMENT); VerifyOrReturnError(signature.Length() == kP256_ECDSA_Signature_Length_Raw, CHIP_ERROR_INVALID_ARGUMENT); CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; mbedtls_mpi r, s; mbedtls_mpi_init(&r); mbedtls_mpi_init(&s); mbedtls_ecp_keypair keypair; mbedtls_ecp_keypair_init(&keypair); mbedtls_ecdsa_context ecdsa_ctxt; mbedtls_ecdsa_init(&ecdsa_ctxt); result = mbedtls_ecp_group_load(&keypair.CHIP_CRYPTO_PAL_PRIVATE(grp), MapECPGroupId(Type())); VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT); result = mbedtls_ecp_point_read_binary(&keypair.CHIP_CRYPTO_PAL_PRIVATE(grp), &keypair.CHIP_CRYPTO_PAL_PRIVATE(Q), Uint8::to_const_uchar(*this), Length()); VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT); result = mbedtls_ecdsa_from_keypair(&ecdsa_ctxt, &keypair); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); // Read the big nums from the signature result = mbedtls_mpi_read_binary(&r, Uint8::to_const_uchar(signature.ConstBytes()) + 0u, kP256_FE_Length); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_mpi_read_binary(&s, Uint8::to_const_uchar(signature.ConstBytes()) + kP256_FE_Length, kP256_FE_Length); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_ecdsa_verify(&ecdsa_ctxt.CHIP_CRYPTO_PAL_PRIVATE(grp), Uint8::to_const_uchar(hash), hash_length, &ecdsa_ctxt.CHIP_CRYPTO_PAL_PRIVATE(Q), &r, &s); VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_SIGNATURE); exit: mbedtls_ecdsa_free(&ecdsa_ctxt); mbedtls_ecp_keypair_free(&keypair); mbedtls_mpi_free(&s); mbedtls_mpi_free(&r); _log_mbedTLS_error(result); return error; #else return CHIP_ERROR_NOT_IMPLEMENTED; #endif } CHIP_ERROR P256Keypair::ECDH_derive_secret(const P256PublicKey & remote_public_key, P256ECDHDerivedSecret & out_secret) const { #if defined(MBEDTLS_ECDH_C) CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; size_t secret_length = (out_secret.Length() == 0) ? out_secret.Capacity() : out_secret.Length(); mbedtls_ecp_group ecp_grp; mbedtls_ecp_group_init(&ecp_grp); mbedtls_mpi mpi_secret; mbedtls_mpi_init(&mpi_secret); mbedtls_ecp_point ecp_pubkey; mbedtls_ecp_point_init(&ecp_pubkey); const mbedtls_ecp_keypair * keypair = to_const_keypair(&mKeypair); VerifyOrExit(mInitialized, error = CHIP_ERROR_UNINITIALIZED); result = mbedtls_ecp_group_load(&ecp_grp, MapECPGroupId(remote_public_key.Type())); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_ecp_point_read_binary(&ecp_grp, &ecp_pubkey, Uint8::to_const_uchar(remote_public_key), remote_public_key.Length()); VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT); result = mbedtls_ecdh_compute_shared(&ecp_grp, &mpi_secret, &ecp_pubkey, &keypair->CHIP_CRYPTO_PAL_PRIVATE(d), CryptoRNG, nullptr); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_mpi_write_binary(&mpi_secret, out_secret.Bytes(), secret_length); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); SuccessOrExit(error = out_secret.SetLength(secret_length)); exit: keypair = nullptr; mbedtls_ecp_group_free(&ecp_grp); mbedtls_mpi_free(&mpi_secret); mbedtls_ecp_point_free(&ecp_pubkey); _log_mbedTLS_error(result); return error; #else return CHIP_ERROR_NOT_IMPLEMENTED; #endif } void ClearSecretData(uint8_t * buf, size_t len) { mbedtls_platform_zeroize(buf, len); } // THE BELOW IS FROM `third_party/openthread/repo/third_party/mbedtls/repo/library/constant_time.c` since // mbedtls_ct_memcmp is not available on Linux somehow :( int mbedtls_ct_memcmp_copy(const void * a, const void * b, size_t n) { size_t i; volatile const unsigned char * A = (volatile const unsigned char *) a; volatile const unsigned char * B = (volatile const unsigned char *) b; volatile unsigned char diff = 0; for (i = 0; i < n; i++) { /* Read volatile data in order before computing diff. * This avoids IAR compiler warning: * 'the order of volatile accesses is undefined ..' */ unsigned char x = A[i], y = B[i]; diff |= x ^ y; } return ((int) diff); } bool IsBufferContentEqualConstantTime(const void * a, const void * b, size_t n) { return mbedtls_ct_memcmp_copy(a, b, n) == 0; } CHIP_ERROR P256Keypair::Initialize(ECPKeyTarget key_target) { CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; size_t pubkey_size = 0; Clear(); mbedtls_ecp_group_id group = MapECPGroupId(mPublicKey.Type()); mbedtls_ecp_keypair * keypair = to_keypair(&mKeypair); mbedtls_ecp_keypair_init(keypair); result = mbedtls_ecp_gen_key(group, keypair, CryptoRNG, nullptr); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_ecp_point_write_binary(&keypair->CHIP_CRYPTO_PAL_PRIVATE(grp), &keypair->CHIP_CRYPTO_PAL_PRIVATE(Q), MBEDTLS_ECP_PF_UNCOMPRESSED, &pubkey_size, Uint8::to_uchar(mPublicKey), mPublicKey.Length()); VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT); VerifyOrExit(pubkey_size == mPublicKey.Length(), error = CHIP_ERROR_INVALID_ARGUMENT); keypair = nullptr; mInitialized = true; exit: if (keypair != nullptr) { mbedtls_ecp_keypair_free(keypair); keypair = nullptr; } _log_mbedTLS_error(result); return error; } CHIP_ERROR P256Keypair::Serialize(P256SerializedKeypair & output) const { const mbedtls_ecp_keypair * keypair = to_const_keypair(&mKeypair); size_t len = output.Length() == 0 ? output.Capacity() : output.Length(); Encoding::BufferWriter bbuf(output.Bytes(), len); uint8_t privkey[kP256_PrivateKey_Length]; CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; bbuf.Put(mPublicKey, mPublicKey.Length()); VerifyOrExit(bbuf.Available() == sizeof(privkey), error = CHIP_ERROR_INTERNAL); VerifyOrExit(mbedtls_mpi_size(&keypair->CHIP_CRYPTO_PAL_PRIVATE(d)) <= bbuf.Available(), error = CHIP_ERROR_INTERNAL); result = mbedtls_mpi_write_binary(&keypair->CHIP_CRYPTO_PAL_PRIVATE(d), Uint8::to_uchar(privkey), sizeof(privkey)); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); bbuf.Put(privkey, sizeof(privkey)); VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_BUFFER_TOO_SMALL); output.SetLength(bbuf.Needed()); exit: ClearSecretData(privkey, sizeof(privkey)); _log_mbedTLS_error(result); return error; } CHIP_ERROR P256Keypair::Deserialize(P256SerializedKeypair & input) { Encoding::BufferWriter bbuf(mPublicKey, mPublicKey.Length()); int result = 0; CHIP_ERROR error = CHIP_NO_ERROR; Clear(); mbedtls_ecp_keypair * keypair = to_keypair(&mKeypair); mbedtls_ecp_keypair_init(keypair); result = mbedtls_ecp_group_load(&keypair->CHIP_CRYPTO_PAL_PRIVATE(grp), MapECPGroupId(mPublicKey.Type())); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); VerifyOrExit(input.Length() == mPublicKey.Length() + kP256_PrivateKey_Length, error = CHIP_ERROR_INVALID_ARGUMENT); bbuf.Put(input.ConstBytes(), mPublicKey.Length()); VerifyOrExit(bbuf.Fit(), error = CHIP_ERROR_NO_MEMORY); result = mbedtls_ecp_point_read_binary(&keypair->CHIP_CRYPTO_PAL_PRIVATE(grp), &keypair->CHIP_CRYPTO_PAL_PRIVATE(Q), Uint8::to_const_uchar(mPublicKey), mPublicKey.Length()); VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT); { const uint8_t * privkey = input.ConstBytes() + mPublicKey.Length(); result = mbedtls_mpi_read_binary(&keypair->CHIP_CRYPTO_PAL_PRIVATE(d), privkey, kP256_PrivateKey_Length); VerifyOrExit(result == 0, error = CHIP_ERROR_INVALID_ARGUMENT); } mInitialized = true; exit: _log_mbedTLS_error(result); return error; } void P256Keypair::Clear() { if (mInitialized) { mbedtls_ecp_keypair * keypair = to_keypair(&mKeypair); mbedtls_ecp_keypair_free(keypair); mInitialized = false; } } P256Keypair::~P256Keypair() { Clear(); } CHIP_ERROR P256Keypair::NewCertificateSigningRequest(uint8_t * out_csr, size_t & csr_length) const { #if defined(MBEDTLS_X509_CSR_WRITE_C) CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; size_t out_length; mbedtls_x509write_csr csr; mbedtls_x509write_csr_init(&csr); mbedtls_pk_context pk; pk.CHIP_CRYPTO_PAL_PRIVATE(pk_info) = mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY); pk.CHIP_CRYPTO_PAL_PRIVATE(pk_ctx) = to_keypair(&mKeypair); VerifyOrExit(pk.CHIP_CRYPTO_PAL_PRIVATE(pk_info) != nullptr, error = CHIP_ERROR_INTERNAL); VerifyOrExit(mInitialized, error = CHIP_ERROR_UNINITIALIZED); mbedtls_x509write_csr_set_key(&csr, &pk); mbedtls_x509write_csr_set_md_alg(&csr, MBEDTLS_MD_SHA256); // TODO: mbedTLS CSR parser fails if the subject name is not set (or if empty). // CHIP Spec doesn't specify the subject name that can be used. // Figure out the correct value and update this code. result = mbedtls_x509write_csr_set_subject_name(&csr, "O=CSR"); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_x509write_csr_der(&csr, out_csr, csr_length, CryptoRNG, nullptr); VerifyOrExit(result > 0, error = CHIP_ERROR_INTERNAL); VerifyOrExit(CanCastTo(result), error = CHIP_ERROR_INTERNAL); out_length = static_cast(result); result = 0; VerifyOrExit(out_length <= csr_length, error = CHIP_ERROR_INTERNAL); if (csr_length != out_length) { // mbedTLS API writes the CSR at the end of the provided buffer. // Let's move it to the start of the buffer. size_t offset = csr_length - out_length; memmove(out_csr, &out_csr[offset], out_length); } csr_length = out_length; exit: mbedtls_x509write_csr_free(&csr); _log_mbedTLS_error(result); return error; #else ChipLogError(Crypto, "MBEDTLS_X509_CSR_WRITE_C is not enabled. CSR cannot be created"); return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; #endif } typedef struct Spake2p_Context { mbedtls_ecp_group curve; mbedtls_ecp_point M; mbedtls_ecp_point N; mbedtls_ecp_point X; mbedtls_ecp_point Y; mbedtls_ecp_point L; mbedtls_ecp_point Z; mbedtls_ecp_point V; mbedtls_mpi w0; mbedtls_mpi w1; mbedtls_mpi xy; mbedtls_mpi tempbn; } Spake2p_Context; static inline Spake2p_Context * to_inner_spake2p_context(Spake2pOpaqueContext * context) { return SafePointerCast(context); } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::InitInternal() { CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); memset(context, 0, sizeof(Spake2p_Context)); mbedtls_ecp_group_init(&context->curve); result = mbedtls_ecp_group_load(&context->curve, MBEDTLS_ECP_DP_SECP256R1); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); VerifyOrExit(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256) != nullptr, error = CHIP_ERROR_INTERNAL); mbedtls_ecp_point_init(&context->M); mbedtls_ecp_point_init(&context->N); mbedtls_ecp_point_init(&context->X); mbedtls_ecp_point_init(&context->Y); mbedtls_ecp_point_init(&context->L); mbedtls_ecp_point_init(&context->V); mbedtls_ecp_point_init(&context->Z); M = &context->M; N = &context->N; X = &context->X; Y = &context->Y; L = &context->L; V = &context->V; Z = &context->Z; mbedtls_mpi_init(&context->w0); mbedtls_mpi_init(&context->w1); mbedtls_mpi_init(&context->xy); mbedtls_mpi_init(&context->tempbn); w0 = &context->w0; w1 = &context->w1; xy = &context->xy; tempbn = &context->tempbn; G = &context->curve.G; order = &context->curve.N; return error; exit: _log_mbedTLS_error(result); Clear(); return error; } void Spake2p_P256_SHA256_HKDF_HMAC::Clear() { VerifyOrReturn(state != CHIP_SPAKE2P_STATE::PREINIT); Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); mbedtls_ecp_point_free(&context->M); mbedtls_ecp_point_free(&context->N); mbedtls_ecp_point_free(&context->X); mbedtls_ecp_point_free(&context->Y); mbedtls_ecp_point_free(&context->L); mbedtls_ecp_point_free(&context->Z); mbedtls_ecp_point_free(&context->V); mbedtls_mpi_free(&context->w0); mbedtls_mpi_free(&context->w1); mbedtls_mpi_free(&context->xy); mbedtls_mpi_free(&context->tempbn); mbedtls_ecp_group_free(&context->curve); state = CHIP_SPAKE2P_STATE::PREINIT; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::Mac(const uint8_t * key, size_t key_len, const uint8_t * in, size_t in_len, MutableByteSpan & out_span) { HMAC_sha hmac; VerifyOrReturnError(out_span.size() >= kSHA256_Hash_Length, CHIP_ERROR_BUFFER_TOO_SMALL); ReturnErrorOnFailure(hmac.HMAC_SHA256(key, key_len, in, in_len, out_span.data(), kSHA256_Hash_Length)); out_span = out_span.SubSpan(0, kSHA256_Hash_Length); return CHIP_NO_ERROR; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::MacVerify(const uint8_t * key, size_t key_len, const uint8_t * mac, size_t mac_len, const uint8_t * in, size_t in_len) { CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; uint8_t computed_mac[kSHA256_Hash_Length]; MutableByteSpan computed_mac_span{ computed_mac }; VerifyOrExit(mac_len == kSHA256_Hash_Length, error = CHIP_ERROR_INVALID_ARGUMENT); SuccessOrExit(error = Mac(key, key_len, in, in_len, computed_mac_span)); VerifyOrExit(computed_mac_span.size() == mac_len, error = CHIP_ERROR_INTERNAL); VerifyOrExit(IsBufferContentEqualConstantTime(mac, computed_mac, kSHA256_Hash_Length), error = CHIP_ERROR_INTERNAL); exit: _log_mbedTLS_error(result); return error; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FELoad(const uint8_t * in, size_t in_len, void * fe) { CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; result = mbedtls_mpi_read_binary((mbedtls_mpi *) fe, Uint8::to_const_uchar(in), in_len); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_mpi_mod_mpi((mbedtls_mpi *) fe, (mbedtls_mpi *) fe, (const mbedtls_mpi *) order); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); exit: _log_mbedTLS_error(result); return error; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEWrite(const void * fe, uint8_t * out, size_t out_len) { if (mbedtls_mpi_write_binary((const mbedtls_mpi *) fe, Uint8::to_uchar(out), out_len) != 0) { return CHIP_ERROR_INTERNAL; } return CHIP_NO_ERROR; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEGenerate(void * fe) { CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); result = mbedtls_ecp_gen_privkey(&context->curve, (mbedtls_mpi *) fe, CryptoRNG, nullptr); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); exit: _log_mbedTLS_error(result); return error; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::FEMul(void * fer, const void * fe1, const void * fe2) { CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; result = mbedtls_mpi_mul_mpi((mbedtls_mpi *) fer, (const mbedtls_mpi *) fe1, (const mbedtls_mpi *) fe2); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_mpi_mod_mpi((mbedtls_mpi *) fer, (mbedtls_mpi *) fer, (const mbedtls_mpi *) order); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); exit: _log_mbedTLS_error(result); return error; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointLoad(const uint8_t * in, size_t in_len, void * R) { Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); if (mbedtls_ecp_point_read_binary(&context->curve, (mbedtls_ecp_point *) R, Uint8::to_const_uchar(in), in_len) != 0) { return CHIP_ERROR_INTERNAL; } return CHIP_NO_ERROR; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointWrite(const void * R, uint8_t * out, size_t out_len) { memset(out, 0, out_len); size_t mbedtls_out_len = out_len; Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); if (mbedtls_ecp_point_write_binary(&context->curve, (const mbedtls_ecp_point *) R, MBEDTLS_ECP_PF_UNCOMPRESSED, &mbedtls_out_len, Uint8::to_uchar(out), out_len) != 0) { return CHIP_ERROR_INTERNAL; } return CHIP_NO_ERROR; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointMul(void * R, const void * P1, const void * fe1) { Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); if (mbedtls_ecp_mul(&context->curve, (mbedtls_ecp_point *) R, (const mbedtls_mpi *) fe1, (const mbedtls_ecp_point *) P1, CryptoRNG, nullptr) != 0) { return CHIP_ERROR_INTERNAL; } return CHIP_NO_ERROR; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointAddMul(void * R, const void * P1, const void * fe1, const void * P2, const void * fe2) { Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); if (mbedtls_ecp_muladd(&context->curve, (mbedtls_ecp_point *) R, (const mbedtls_mpi *) fe1, (const mbedtls_ecp_point *) P1, (const mbedtls_mpi *) fe2, (const mbedtls_ecp_point *) P2) != 0) { return CHIP_ERROR_INTERNAL; } return CHIP_NO_ERROR; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointInvert(void * R) { mbedtls_ecp_point * Rp = (mbedtls_ecp_point *) R; Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); if (mbedtls_mpi_sub_mpi(&Rp->CHIP_CRYPTO_PAL_PRIVATE(Y), &context->curve.P, &Rp->CHIP_CRYPTO_PAL_PRIVATE(Y)) != 0) { return CHIP_ERROR_INTERNAL; } return CHIP_NO_ERROR; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointCofactorMul(void * R) { return CHIP_NO_ERROR; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::ComputeL(uint8_t * Lout, size_t * L_len, const uint8_t * w1in, size_t w1in_len) { CHIP_ERROR error = CHIP_NO_ERROR; int result = 0; mbedtls_ecp_group curve; mbedtls_mpi w1_bn; mbedtls_ecp_point Ltemp; mbedtls_ecp_group_init(&curve); mbedtls_mpi_init(&w1_bn); mbedtls_ecp_point_init(&Ltemp); result = mbedtls_ecp_group_load(&curve, MBEDTLS_ECP_DP_SECP256R1); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_mpi_read_binary(&w1_bn, Uint8::to_const_uchar(w1in), w1in_len); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_mpi_mod_mpi(&w1_bn, &w1_bn, &curve.N); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); result = mbedtls_ecp_mul(&curve, &Ltemp, &w1_bn, &curve.G, CryptoRNG, nullptr); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); memset(Lout, 0, *L_len); result = mbedtls_ecp_point_write_binary(&curve, &Ltemp, MBEDTLS_ECP_PF_UNCOMPRESSED, L_len, Uint8::to_uchar(Lout), *L_len); VerifyOrExit(result == 0, error = CHIP_ERROR_INTERNAL); exit: _log_mbedTLS_error(result); mbedtls_ecp_point_free(&Ltemp); mbedtls_mpi_free(&w1_bn); mbedtls_ecp_group_free(&curve); return error; } CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::PointIsValid(void * R) { Spake2p_Context * context = to_inner_spake2p_context(&mSpake2pContext); if (mbedtls_ecp_check_pubkey(&context->curve, (mbedtls_ecp_point *) R) != 0) { return CHIP_ERROR_INTERNAL; } return CHIP_NO_ERROR; } } // namespace Crypto } // namespace chip