/* * * Copyright (c) 2021 Project CHIP Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * Provides an implementation of the DiagnosticDataProvider object * for Ameba platform. */ #include #include #include #include #include #include using namespace chip::DeviceLayer::Internal; namespace chip { namespace DeviceLayer { DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance() { static DiagnosticDataProviderImpl sInstance; return sInstance; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree) { currentHeapFree = xPortGetFreeHeapSize(); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed) { currentHeapUsed = xPortGetTotalHeapSize() - xPortGetFreeHeapSize(); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark) { currentHeapHighWatermark = xPortGetTotalHeapSize() - xPortGetMinimumEverFreeHeapSize(); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::ResetWatermarks() { // If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the // value of the CurrentHeapUsed. xPortResetHeapMinimumEverFreeHeapSize(); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut) { /* Obtain all available task information */ TaskStatus_t * taskStatusArray; ThreadMetrics * head = nullptr; unsigned long arraySize, x, dummy; arraySize = uxTaskGetNumberOfTasks(); taskStatusArray = (TaskStatus_t *) pvPortMalloc(arraySize * sizeof(TaskStatus_t)); if (taskStatusArray != NULL) { /* Generate raw status information about each task. */ arraySize = uxTaskGetSystemState(taskStatusArray, arraySize, &dummy); /* For each populated position in the taskStatusArray array, format the raw data as human readable ASCII data. */ for (x = 0; x < arraySize; x++) { ThreadMetrics * thread = (ThreadMetrics *) pvPortMalloc(sizeof(ThreadMetrics)); Platform::CopyString(thread->NameBuf, taskStatusArray[x].pcTaskName); thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf)); thread->id = taskStatusArray[x].xTaskNumber; thread->stackFreeMinimum.Emplace(taskStatusArray[x].usStackHighWaterMark); thread->stackSize.Emplace(uxTaskGetStackSize(taskStatusArray[x].xHandle)); thread->stackFreeCurrent.Emplace(uxTaskGetFreeStackSize(taskStatusArray[x].xHandle)); thread->Next = head; head = thread; } *threadMetricsOut = head; /* The array is no longer needed, free the memory it consumes. */ vPortFree(taskStatusArray); } return CHIP_NO_ERROR; } void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics) { while (threadMetrics) { ThreadMetrics * del = threadMetrics; threadMetrics = threadMetrics->Next; vPortFree(del); } } CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount) { uint32_t count = 0; CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count); if (err == CHIP_NO_ERROR) { VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); rebootCount = static_cast(count); } return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime) { System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp(); System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime(); if (currentTime >= startTime) { upTime = std::chrono::duration_cast(currentTime - startTime).count(); return CHIP_NO_ERROR; } return CHIP_ERROR_INVALID_TIME; } CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours) { uint64_t upTime = 0; if (GetUpTime(upTime) == CHIP_NO_ERROR) { uint32_t totalHours = 0; if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR) { VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); totalOperationalHours = totalHours + static_cast(upTime / 3600); return CHIP_NO_ERROR; } } return CHIP_ERROR_INVALID_TIME; } CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason) { uint32_t reason = 0; CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason); if (err == CHIP_NO_ERROR) { VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); bootReason = static_cast(reason); } return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp) { CHIP_ERROR err = CHIP_ERROR_READ_FAILED; NetworkInterface * head = NULL; struct ifaddrs * ifaddr = nullptr; // xnetif is never null, no need to check. If we do check with -Werror=address, we get compiler error. for (struct netif * ifa = xnetif; ifa != NULL; ifa = ifa->next) { NetworkInterface * ifp = new NetworkInterface(); Platform::CopyString(ifp->Name, ifa->name); ifp->name = CharSpan::fromCharString(ifp->Name); ifp->isOperational = true; if ((ifa->flags) & NETIF_FLAG_ETHERNET) ifp->type = app::Clusters::GeneralDiagnostics::InterfaceTypeEnum::kEthernet; else ifp->type = app::Clusters::GeneralDiagnostics::InterfaceTypeEnum::kWiFi; ifp->offPremiseServicesReachableIPv4.SetNull(); ifp->offPremiseServicesReachableIPv6.SetNull(); memcpy(ifp->MacAddress, ifa->hwaddr, sizeof(ifa->hwaddr)); if (0) { ChipLogError(DeviceLayer, "Failed to get network hardware address"); } else { // Set 48-bit IEEE MAC Address ifp->hardwareAddress = ByteSpan(ifp->MacAddress, 6); } if (ifa->ip_addr.u_addr.ip4.addr != 0) { memcpy(ifp->Ipv4AddressesBuffer[0], &(ifa->ip_addr.u_addr.ip4.addr), kMaxIPv4AddrSize); ifp->Ipv4AddressSpans[0] = ByteSpan(ifp->Ipv4AddressesBuffer[0], kMaxIPv4AddrSize); ifp->IPv4Addresses = chip::app::DataModel::List(ifp->Ipv4AddressSpans, 1); } // ifa->ip6_addr->u_addr.ip6.addr is never null, no need to check. If we do check with -Werror=address, we get compiler // error. memcpy(ifp->Ipv6AddressesBuffer[0], &(ifa->ip6_addr->u_addr.ip6.addr), kMaxIPv6AddrSize); ifp->Ipv6AddressSpans[0] = ByteSpan(ifp->Ipv6AddressesBuffer[0], kMaxIPv6AddrSize); ifp->IPv6Addresses = chip::app::DataModel::List(ifp->Ipv6AddressSpans, 1); ifp->Next = head; head = ifp; } *netifpp = head; return CHIP_NO_ERROR; } void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp) { while (netifp) { NetworkInterface * del = netifp; netifp = netifp->Next; delete del; } } #if CHIP_DEVICE_CONFIG_ENABLE_WIFI CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(MutableByteSpan & BssId) { CHIP_ERROR err; int32_t error; constexpr size_t bssIdSize = 6; VerifyOrReturnError(BssId.size() >= bssIdSize, CHIP_ERROR_BUFFER_TOO_SMALL); error = matter_wifi_get_ap_bssid(BssId.data()); err = AmebaUtils::MapError(error, AmebaErrorType::kWiFiError); if (err != CHIP_NO_ERROR) { return err; } BssId.reduce_size(bssIdSize); ChipLogProgress(DeviceLayer, "%02x,%02x,%02x,%02x,%02x,%02x\n", BssId.data()[0], BssId.data()[1], BssId.data()[2], BssId.data()[3], BssId.data()[4], BssId.data()[5]); return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum & wifiVersion) { // Support 802.11a/n Wi-Fi in AmebaD chipset // TODO: https://github.com/project-chip/connectedhomeip/issues/25542 wifiVersion = app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kN; return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum & securityType) { CHIP_ERROR err; int32_t error; using app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum; unsigned int _auth_type; unsigned short security = 0; rtw_wifi_setting_t setting; error = matter_wifi_get_security_type(WLAN0_IDX, &security, &setting.key_idx, setting.password); err = AmebaUtils::MapError(error, AmebaErrorType::kWiFiError); if (err != CHIP_NO_ERROR) { securityType = SecurityTypeEnum::kUnspecified; } #ifdef CONFIG_PLATFORM_8721D else { switch (security) { case IW_ENCODE_ALG_NONE: securityType = SecurityTypeEnum::kNone; break; case IW_ENCODE_ALG_WEP: securityType = SecurityTypeEnum::kWep; break; case IW_ENCODE_ALG_TKIP: securityType = SecurityTypeEnum::kWpa; break; case IW_ENCODE_ALG_CCMP: securityType = SecurityTypeEnum::kWpa2; break; default: securityType = SecurityTypeEnum::kUnspecified; break; } } #else else { switch (security) { case IW_ENCODE_ALG_NONE: securityType = SecurityTypeEnum::kNone; break; case IW_ENCODE_ALG_WEP: securityType = SecurityTypeEnum::kWep; break; case IW_ENCODE_ALG_TKIP: if (_auth_type == WPA_SECURITY) securityType = SecurityTypeEnum::kWpa; else if (_auth_type == WPA2_SECURITY) securityType = SecurityTypeEnum::kWpa2; break; case IW_ENCODE_ALG_CCMP: if (_auth_type == WPA_SECURITY) securityType = SecurityTypeEnum::kWpa; else if (_auth_type == WPA2_SECURITY) securityType = SecurityTypeEnum::kWpa2; else if (_auth_type == WPA3_SECURITY) securityType = SecurityTypeEnum::kWpa3; break; default: securityType = SecurityTypeEnum::kUnspecified; break; } } #endif return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber) { CHIP_ERROR err; int32_t error; unsigned char channel; error = matter_wifi_get_wifi_channel_number(WLAN0_IDX, &channel); err = AmebaUtils::MapError(error, AmebaErrorType::kWiFiError); if (err != CHIP_NO_ERROR) channelNumber = 0; else channelNumber = (uint16_t) channel; return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi) { CHIP_ERROR err; int32_t error; error = matter_wifi_get_rssi((int *) &rssi); err = AmebaUtils::MapError(error, AmebaErrorType::kWiFiError); if (err != CHIP_NO_ERROR) { // set rssi to 0 upon error rssi = 0; } return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount) { beaconLostCount = 0; return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiCurrentMaxRate(uint64_t & currentMaxRate) { currentMaxRate = 0; return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount) { packetMulticastRxCount = 0; return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount) { packetMulticastTxCount = 0; return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount) { packetUnicastRxCount = 0; return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount) { packetUnicastTxCount = 0; return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount) { overrunCount = 0; return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts() { return CHIP_NO_ERROR; } #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI DiagnosticDataProvider & GetDiagnosticDataProviderImpl() { return DiagnosticDataProviderImpl::GetDefaultInstance(); } } // namespace DeviceLayer } // namespace chip