/* * * Copyright (c) 2021-2022 Project CHIP Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * Provides an implementation of the DiagnosticDataProvider object * for ESP32 platform. */ #include #include #include #include #include #include #include "esp_event.h" #include "esp_heap_caps_init.h" #include "esp_log.h" #include "esp_netif.h" #if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 0, 0) #include "spi_flash_mmap.h" #else #include "esp_spi_flash.h" #endif #include "esp_mac.h" #include "esp_system.h" #include "esp_wifi.h" using namespace ::chip; using namespace ::chip::TLV; using namespace ::chip::DeviceLayer; using namespace ::chip::DeviceLayer::Internal; using namespace ::chip::app::Clusters::GeneralDiagnostics; namespace { InterfaceTypeEnum GetInterfaceType(const char * if_desc) { if (strncmp(if_desc, "ap", strnlen(if_desc, 2)) == 0 || strncmp(if_desc, "sta", strnlen(if_desc, 3)) == 0) return InterfaceTypeEnum::kWiFi; if (strncmp(if_desc, "openthread", strnlen(if_desc, 10)) == 0) return InterfaceTypeEnum::kThread; if (strncmp(if_desc, "eth", strnlen(if_desc, 3)) == 0) return InterfaceTypeEnum::kEthernet; return InterfaceTypeEnum::kUnspecified; } #if CHIP_DEVICE_CONFIG_ENABLE_WIFI app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum MapAuthModeToSecurityType(wifi_auth_mode_t authmode) { using app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum; switch (authmode) { case WIFI_AUTH_OPEN: return SecurityTypeEnum::kNone; case WIFI_AUTH_WEP: return SecurityTypeEnum::kWep; case WIFI_AUTH_WPA_PSK: return SecurityTypeEnum::kWpa; case WIFI_AUTH_WPA2_PSK: return SecurityTypeEnum::kWpa2; case WIFI_AUTH_WPA3_PSK: return SecurityTypeEnum::kWpa3; default: return SecurityTypeEnum::kUnspecified; } } app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum GetWiFiVersionFromAPRecord(wifi_ap_record_t ap_info) { using app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum; if (ap_info.phy_11n) return WiFiVersionEnum::kN; else if (ap_info.phy_11g) return WiFiVersionEnum::kG; else if (ap_info.phy_11b) return WiFiVersionEnum::kB; else return WiFiVersionEnum::kUnknownEnumValue; } #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI } // namespace namespace chip { namespace DeviceLayer { DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance() { static DiagnosticDataProviderImpl sInstance; return sInstance; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree) { currentHeapFree = esp_get_free_heap_size(); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed) { currentHeapUsed = heap_caps_get_total_size(MALLOC_CAP_DEFAULT) - esp_get_free_heap_size(); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark) { currentHeapHighWatermark = heap_caps_get_total_size(MALLOC_CAP_DEFAULT) - esp_get_minimum_free_heap_size(); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount) { uint32_t count = 0; CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count); if (err == CHIP_NO_ERROR) { VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); rebootCount = static_cast(count); } return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime) { System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp(); System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime(); if (currentTime >= startTime) { upTime = std::chrono::duration_cast(currentTime - startTime).count(); return CHIP_NO_ERROR; } return CHIP_ERROR_INVALID_TIME; } CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours) { uint64_t upTime = 0; if (GetUpTime(upTime) == CHIP_NO_ERROR) { uint32_t totalHours = 0; if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR) { VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); totalOperationalHours = totalHours + static_cast(upTime / 3600); return CHIP_NO_ERROR; } } return CHIP_ERROR_INVALID_TIME; } CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason) { bootReason = BootReasonType::kUnspecified; uint8_t reason; reason = static_cast(esp_reset_reason()); if (reason == ESP_RST_UNKNOWN) { bootReason = BootReasonType::kUnspecified; } else if (reason == ESP_RST_POWERON) { bootReason = BootReasonType::kPowerOnReboot; } else if (reason == ESP_RST_BROWNOUT) { bootReason = BootReasonType::kBrownOutReset; } else if (reason == ESP_RST_SW) { bootReason = BootReasonType::kSoftwareReset; } else if (reason == ESP_RST_INT_WDT) { bootReason = BootReasonType::kSoftwareWatchdogReset; /* Reboot can be due to hardware or software watchdog*/ } return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp) { esp_netif_t * netif = esp_netif_next(NULL); NetworkInterface * head = NULL; uint8_t ipv6_addr_count = 0; esp_ip6_addr_t ip6_addr[LWIP_IPV6_NUM_ADDRESSES]; if (netif == NULL) { ChipLogError(DeviceLayer, "Failed to get network interfaces"); } else { for (esp_netif_t * ifa = netif; ifa != NULL; ifa = esp_netif_next(ifa)) { NetworkInterface * ifp = new NetworkInterface(); esp_netif_ip_info_t ipv4_info; Platform::CopyString(ifp->Name, esp_netif_get_ifkey(ifa)); ifp->name = CharSpan::fromCharString(ifp->Name); ifp->isOperational = true; ifp->type = GetInterfaceType(esp_netif_get_desc(ifa)); ifp->offPremiseServicesReachableIPv4.SetNull(); ifp->offPremiseServicesReachableIPv6.SetNull(); #if !CHIP_DEVICE_CONFIG_ENABLE_THREAD if (esp_netif_get_mac(ifa, ifp->MacAddress) != ESP_OK) { ChipLogError(DeviceLayer, "Failed to get network hardware address"); } else { ifp->hardwareAddress = ByteSpan(ifp->MacAddress, 6); } #else if (esp_read_mac(ifp->MacAddress, ESP_MAC_IEEE802154) != ESP_OK) { ChipLogError(DeviceLayer, "Failed to get network hardware address"); } else { ifp->hardwareAddress = ByteSpan(ifp->MacAddress, 8); } #endif #ifndef CONFIG_DISABLE_IPV4 if (esp_netif_get_ip_info(ifa, &ipv4_info) == ESP_OK) { memcpy(ifp->Ipv4AddressesBuffer[0], &(ipv4_info.ip.addr), kMaxIPv4AddrSize); ifp->Ipv4AddressSpans[0] = ByteSpan(ifp->Ipv4AddressesBuffer[0], kMaxIPv4AddrSize); ifp->IPv4Addresses = app::DataModel::List(ifp->Ipv4AddressSpans, 1); } #endif // !defined(CONFIG_DISABLE_IPV4) static_assert(kMaxIPv6AddrCount <= UINT8_MAX, "Count might not fit in ipv6_addr_count"); auto addr_count = esp_netif_get_all_ip6(ifa, ip6_addr); if (addr_count < 0) { ipv6_addr_count = 0; } else { ipv6_addr_count = static_cast(std::min(addr_count, static_cast(kMaxIPv6AddrCount))); } for (uint8_t idx = 0; idx < ipv6_addr_count; ++idx) { memcpy(ifp->Ipv6AddressesBuffer[idx], ip6_addr[idx].addr, kMaxIPv6AddrSize); ifp->Ipv6AddressSpans[idx] = ByteSpan(ifp->Ipv6AddressesBuffer[idx], kMaxIPv6AddrSize); } ifp->IPv6Addresses = app::DataModel::List(ifp->Ipv6AddressSpans, ipv6_addr_count); ifp->Next = head; head = ifp; } } *netifpp = head; return CHIP_NO_ERROR; } void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp) { while (netifp) { NetworkInterface * del = netifp; netifp = netifp->Next; delete del; } } #if CHIP_DEVICE_CONFIG_ENABLE_WIFI CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(MutableByteSpan & BssId) { constexpr size_t bssIdSize = 6; VerifyOrReturnError(BssId.size() >= bssIdSize, CHIP_ERROR_BUFFER_TOO_SMALL); wifi_ap_record_t ap_info; esp_err_t err; err = esp_wifi_sta_get_ap_info(&ap_info); if (err != ESP_OK) { return CHIP_ERROR_READ_FAILED; } memcpy(BssId.data(), ap_info.bssid, bssIdSize); BssId.reduce_size(bssIdSize); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum & securityType) { using app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum; securityType = SecurityTypeEnum::kUnspecified; wifi_ap_record_t ap_info; esp_err_t err; err = esp_wifi_sta_get_ap_info(&ap_info); if (err == ESP_OK) { securityType = MapAuthModeToSecurityType(ap_info.authmode); } return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum & wifiVersion) { wifi_ap_record_t ap_info; esp_err_t err = esp_wifi_sta_get_ap_info(&ap_info); VerifyOrReturnError(err == ESP_OK, ESP32Utils::MapError(err)); wifiVersion = GetWiFiVersionFromAPRecord(ap_info); VerifyOrReturnError(wifiVersion != app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kUnknownEnumValue, CHIP_ERROR_INTERNAL); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber) { channelNumber = 0; wifi_ap_record_t ap_info; esp_err_t err; err = esp_wifi_sta_get_ap_info(&ap_info); if (err == ESP_OK) { channelNumber = ap_info.primary; return CHIP_NO_ERROR; } return ESP32Utils::MapError(err); } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi) { rssi = 0; wifi_ap_record_t ap_info; esp_err_t err; err = esp_wifi_sta_get_ap_info(&ap_info); if (err == ESP_OK) { rssi = ap_info.rssi; return CHIP_NO_ERROR; } return ESP32Utils::MapError(err); } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount) { return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiCurrentMaxRate(uint64_t & currentMaxRate) { return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount) { return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount) { return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount) { return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount) { return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount) { return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts() { return CHIP_NO_ERROR; } #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFI DiagnosticDataProvider & GetDiagnosticDataProviderImpl() { return DiagnosticDataProviderImpl::GetDefaultInstance(); } } // namespace DeviceLayer } // namespace chip