/* * * Copyright (c) 2021-2022 Project CHIP Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * Provides an implementation of the DiagnosticDataProvider object * for cc13xx platform. */ #include #include #include #include #include #include namespace chip { namespace DeviceLayer { DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance() { static DiagnosticDataProviderImpl sInstance; return sInstance; } /* * The following Heap stats are compiled values done by the BGET heap implementation. * See https://www.fourmilab.ch/bget/ */ CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree) { long freeHeapSize, dummy; bstats(&dummy, &freeHeapSize, &dummy, &dummy, &dummy); currentHeapFree = static_cast(freeHeapSize); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed) { long heapUsed, dummy; bstats(&heapUsed, &dummy, &dummy, &dummy, &dummy); VerifyOrReturnError(heapUsed >= 0, CHIP_ERROR_INVALID_INTEGER_VALUE); currentHeapUsed = static_cast(heapUsed); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut) { /* Obtain all available task information */ TaskStatus_t * taskStatusArray; ThreadMetrics * head = nullptr; unsigned long arraySize, x, dummy; arraySize = uxTaskGetNumberOfTasks(); taskStatusArray = (TaskStatus_t *) pvPortMalloc(arraySize * sizeof(TaskStatus_t)); if (taskStatusArray != NULL) { /* Generate raw status information about each task. */ arraySize = uxTaskGetSystemState(taskStatusArray, arraySize, &dummy); /* For each populated position in the taskStatusArray array, format the raw data as human readable ASCII data. */ for (x = 0; x < arraySize; x++) { ThreadMetrics * thread = (ThreadMetrics *) pvPortMalloc(sizeof(ThreadMetrics)); Platform::CopyString(thread->NameBuf, taskStatusArray[x].pcTaskName); thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf)); thread->id = taskStatusArray[x].xTaskNumber; thread->stackFreeMinimum.Emplace(taskStatusArray[x].usStackHighWaterMark); /* Unsupported metrics */ // thread->stackSize // thread->stackFreeCurrent thread->Next = head; head = thread; } *threadMetricsOut = head; /* The array is no longer needed, free the memory it consumes. */ vPortFree(taskStatusArray); } return CHIP_NO_ERROR; } void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics) { while (threadMetrics) { ThreadMetrics * del = threadMetrics; threadMetrics = threadMetrics->Next; vPortFree(del); } } // General Diagnostics Getters CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount) { uint32_t count = 0; CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count); if (err == CHIP_NO_ERROR) { VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); rebootCount = static_cast(count); } return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason) { switch (SysCtrlResetSourceGet()) { case RSTSRC_PWR_ON: case RSTSRC_WAKEUP_FROM_SHUTDOWN: bootReason = BootReasonType::kPowerOnReboot; break; case RSTSRC_PIN_RESET: case RSTSRC_WAKEUP_FROM_TCK_NOISE: bootReason = BootReasonType::kHardwareWatchdogReset; break; case RSTSRC_VDDS_LOSS: case RSTSRC_VDDR_LOSS: case RSTSRC_CLK_LOSS: bootReason = BootReasonType::kBrownOutReset; break; case RSTSRC_SYSRESET: case RSTSRC_WARMRESET: bootReason = BootReasonType::kSoftwareReset; // We do not have a clean way to differentiate between a software reset // and a completed software update. // bootReason = kSoftwareUpdateCompleted; break; default: bootReason = BootReasonType::kUnknownEnumValue; break; } return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime) { System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp(); System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime(); if (currentTime >= startTime) { upTime = std::chrono::duration_cast(currentTime - startTime).count(); return CHIP_NO_ERROR; } return CHIP_ERROR_INVALID_TIME; } CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours) { uint64_t upTime = 0; if (GetUpTime(upTime) == CHIP_NO_ERROR) { uint32_t totalHours = 0; if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR) { VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); totalOperationalHours = totalHours + static_cast(upTime / 3600); return CHIP_NO_ERROR; } } return CHIP_ERROR_INVALID_TIME; } CHIP_ERROR DiagnosticDataProviderImpl::GetActiveHardwareFaults(GeneralFaults & hardwareFaults) { #if CHIP_CONFIG_TEST using app::Clusters::GeneralDiagnostics::HardwareFaultEnum; ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kRadio))); ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kSensor))); ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kPowerSource))); ReturnErrorOnFailure(hardwareFaults.add(to_underlying(HardwareFaultEnum::kUserInterfaceFault))); #endif return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetActiveRadioFaults(GeneralFaults & radioFaults) { #if CHIP_CONFIG_TEST ReturnErrorOnFailure(radioFaults.add(to_underlying(RadioFaultEnum::kThreadFault))); ReturnErrorOnFailure(radioFaults.add(to_underlying(RadioFaultEnum::kBLEFault))); #endif return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetActiveNetworkFaults(GeneralFaults & networkFaults) { #if CHIP_CONFIG_TEST using app::Clusters::GeneralDiagnostics::NetworkFaultEnum; ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kHardwareFailure))); ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kNetworkJammed))); ReturnErrorOnFailure(networkFaults.add(to_underlying(NetworkFaultEnum::kConnectionFailed))); #endif return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp) { NetworkInterface * ifp = new NetworkInterface(); const char * threadNetworkName = otThreadGetNetworkName(ThreadStackMgrImpl().OTInstance()); ifp->name = Span(threadNetworkName, strlen(threadNetworkName)); ifp->isOperational = true; ifp->offPremiseServicesReachableIPv4.SetNull(); ifp->offPremiseServicesReachableIPv6.SetNull(); ifp->type = app::Clusters::GeneralDiagnostics::InterfaceTypeEnum::kThread; otExtAddress extAddr; ThreadStackMgrImpl().GetExtAddress(extAddr); ifp->hardwareAddress = ByteSpan(extAddr.m8, OT_EXT_ADDRESS_SIZE); /* Thread only support IPv6 */ uint8_t ipv6AddressesCount = 0; for (Inet::InterfaceAddressIterator iterator; iterator.Next() && ipv6AddressesCount < kMaxIPv6AddrCount;) { chip::Inet::IPAddress ipv6Address; if (iterator.GetAddress(ipv6Address) == CHIP_NO_ERROR) { memcpy(ifp->Ipv6AddressesBuffer[ipv6AddressesCount], ipv6Address.Addr, kMaxIPv6AddrSize); ifp->Ipv6AddressSpans[ipv6AddressesCount] = ByteSpan(ifp->Ipv6AddressesBuffer[ipv6AddressesCount]); ipv6AddressesCount++; } } ifp->IPv6Addresses = app::DataModel::List(ifp->Ipv6AddressSpans, ipv6AddressesCount); *netifpp = ifp; return CHIP_NO_ERROR; } void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp) { while (netifp) { NetworkInterface * del = netifp; netifp = netifp->Next; delete del; } } DiagnosticDataProvider & GetDiagnosticDataProviderImpl() { return DiagnosticDataProviderImpl::GetDefaultInstance(); } } // namespace DeviceLayer } // namespace chip