/* * * Copyright (c) 2021 Project CHIP Authors * Copyright 2023 NXP * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * Provides an implementation of the DiagnosticDataProvider object * for nxp platform. */ #include #include "DiagnosticDataProviderImpl.h" #include #include #include #include #if CHIP_SYSTEM_CONFIG_USE_LWIP #include #endif #if CHIP_DEVICE_CONFIG_ENABLE_WPA extern "C" { #include "wlan.h" #include } #endif #if NXP_USE_MML #include "fsl_component_mem_manager.h" #define GetFreeHeapSize MEM_GetFreeHeapSize #define HEAP_SIZE MinimalHeapSize_c #define GetMinimumEverFreeHeapSize MEM_GetFreeHeapSizeLowWaterMark #else #define GetFreeHeapSize xPortGetFreeHeapSize #define HEAP_SIZE configTOTAL_HEAP_SIZE #define GetMinimumEverFreeHeapSize xPortGetMinimumEverFreeHeapSize #endif // NXP_USE_MML // Not implement into the SDK // extern "C" void xPortResetHeapMinimumEverFreeHeapSize(void); namespace chip { namespace DeviceLayer { DiagnosticDataProviderImpl & DiagnosticDataProviderImpl::GetDefaultInstance() { static DiagnosticDataProviderImpl sInstance; return sInstance; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapFree(uint64_t & currentHeapFree) { size_t freeHeapSize; freeHeapSize = GetFreeHeapSize(); currentHeapFree = static_cast(freeHeapSize); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapUsed(uint64_t & currentHeapUsed) { size_t freeHeapSize; size_t usedHeapSize; freeHeapSize = GetFreeHeapSize(); usedHeapSize = HEAP_SIZE - freeHeapSize; currentHeapUsed = static_cast(usedHeapSize); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetCurrentHeapHighWatermark(uint64_t & currentHeapHighWatermark) { size_t highWatermarkHeapSize; highWatermarkHeapSize = HEAP_SIZE - GetMinimumEverFreeHeapSize(); currentHeapHighWatermark = static_cast(highWatermarkHeapSize); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::ResetWatermarks() { // If implemented, the server SHALL set the value of the CurrentHeapHighWatermark attribute to the // value of the CurrentHeapUsed. #if NXP_USE_MML MEM_ResetFreeHeapSizeLowWaterMark(); return CHIP_NO_ERROR; #else // Not implement into the SDK // xPortResetHeapMinimumEverFreeHeapSize(); return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; #endif } CHIP_ERROR DiagnosticDataProviderImpl::GetThreadMetrics(ThreadMetrics ** threadMetricsOut) { /* Obtain all available task information */ TaskStatus_t * taskStatusArray; ThreadMetrics * head = nullptr; unsigned long arraySize, x, dummy; arraySize = uxTaskGetNumberOfTasks(); taskStatusArray = (TaskStatus_t *) pvPortMalloc(arraySize * sizeof(TaskStatus_t)); if (taskStatusArray != NULL) { /* Generate raw status information about each task. */ arraySize = uxTaskGetSystemState(taskStatusArray, arraySize, &dummy); /* For each populated position in the taskStatusArray array, format the raw data as human readable ASCII data. */ for (x = 0; x < arraySize; x++) { ThreadMetrics * thread = (ThreadMetrics *) pvPortMalloc(sizeof(ThreadMetrics)); Platform::CopyString(thread->NameBuf, taskStatusArray[x].pcTaskName); thread->name.Emplace(CharSpan::fromCharString(thread->NameBuf)); thread->id = taskStatusArray[x].xTaskNumber; thread->stackFreeMinimum.Emplace(taskStatusArray[x].usStackHighWaterMark); /* Unsupported metrics */ thread->stackFreeCurrent.ClearValue(); thread->stackSize.ClearValue(); thread->Next = head; head = thread; } *threadMetricsOut = head; /* The array is no longer needed, free the memory it consumes. */ vPortFree(taskStatusArray); } return CHIP_NO_ERROR; } void DiagnosticDataProviderImpl::ReleaseThreadMetrics(ThreadMetrics * threadMetrics) { while (threadMetrics) { ThreadMetrics * del = threadMetrics; threadMetrics = threadMetrics->Next; vPortFree(del); } } CHIP_ERROR DiagnosticDataProviderImpl::GetRebootCount(uint16_t & rebootCount) { uint32_t count = 0; CHIP_ERROR err = ConfigurationMgr().GetRebootCount(count); if (err == CHIP_NO_ERROR) { VerifyOrReturnError(count <= UINT16_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); rebootCount = static_cast(count); } return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetUpTime(uint64_t & upTime) { System::Clock::Timestamp currentTime = System::SystemClock().GetMonotonicTimestamp(); System::Clock::Timestamp startTime = PlatformMgrImpl().GetStartTime(); if (currentTime >= startTime) { upTime = std::chrono::duration_cast(currentTime - startTime).count(); return CHIP_NO_ERROR; } return CHIP_ERROR_INVALID_TIME; } CHIP_ERROR DiagnosticDataProviderImpl::GetTotalOperationalHours(uint32_t & totalOperationalHours) { uint64_t upTime = 0; if (GetUpTime(upTime) == CHIP_NO_ERROR) { uint32_t totalHours = 0; if (ConfigurationMgr().GetTotalOperationalHours(totalHours) == CHIP_NO_ERROR) { VerifyOrReturnError(upTime / 3600 <= UINT32_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); totalOperationalHours = totalHours + static_cast(upTime / 3600); return CHIP_NO_ERROR; } } return CHIP_ERROR_INVALID_TIME; } CHIP_ERROR DiagnosticDataProviderImpl::GetBootReason(BootReasonType & bootReason) { uint32_t reason = 0; CHIP_ERROR err = ConfigurationMgr().GetBootReason(reason); if (err == CHIP_NO_ERROR) { VerifyOrReturnError(reason <= UINT8_MAX, CHIP_ERROR_INVALID_INTEGER_VALUE); bootReason = static_cast(reason); } return err; } CHIP_ERROR DiagnosticDataProviderImpl::GetNetworkInterfaces(NetworkInterface ** netifpp) { NetworkInterface * ifp = new NetworkInterface(); #if CHIP_DEVICE_CONFIG_ENABLE_THREAD const char * threadNetworkName = otThreadGetNetworkName(ThreadStackMgrImpl().OTInstance()); ifp->name = CharSpan(threadNetworkName, strlen(threadNetworkName)); ifp->isOperational = true; ifp->offPremiseServicesReachableIPv4.SetNull(); ifp->offPremiseServicesReachableIPv6.SetNull(); ifp->type = app::Clusters::GeneralDiagnostics::InterfaceTypeEnum::kThread; ConfigurationMgr().GetPrimary802154MACAddress(ifp->MacAddress); ifp->hardwareAddress = ByteSpan(ifp->MacAddress, kMaxHardwareAddrSize); #elif CHIP_DEVICE_CONFIG_ENABLE_WPA struct netif * netif = nullptr; netif = static_cast(net_get_mlan_handle()); strncpy(ifp->Name, "wlan0", Inet::InterfaceId::kMaxIfNameLength); ifp->name = CharSpan(ifp->Name, strlen(ifp->Name)); ifp->isOperational = true; ifp->offPremiseServicesReachableIPv4.SetNull(); ifp->offPremiseServicesReachableIPv6.SetNull(); ifp->type = app::Clusters::GeneralDiagnostics::InterfaceTypeEnum::kWiFi; ifp->hardwareAddress = ByteSpan(netif->hwaddr, netif->hwaddr_len); #endif // IPv6-only support Inet::InterfaceAddressIterator interfAddrIterator; uint8_t ipv6AddressesCount = 0; while (interfAddrIterator.HasCurrent() && ipv6AddressesCount < kMaxIPv6AddrCount) { chip::Inet::IPAddress ipv6Address; if (interfAddrIterator.GetAddress(ipv6Address) == CHIP_NO_ERROR) { memcpy(ifp->Ipv6AddressesBuffer[ipv6AddressesCount], ipv6Address.Addr, kMaxIPv6AddrSize); ifp->Ipv6AddressSpans[ipv6AddressesCount] = ByteSpan(ifp->Ipv6AddressesBuffer[ipv6AddressesCount]); ipv6AddressesCount++; } interfAddrIterator.Next(); } ifp->IPv6Addresses = chip::app::DataModel::List(ifp->Ipv6AddressSpans, ipv6AddressesCount); *netifpp = ifp; return CHIP_NO_ERROR; } void DiagnosticDataProviderImpl::ReleaseNetworkInterfaces(NetworkInterface * netifp) { while (netifp) { NetworkInterface * del = netifp; netifp = netifp->Next; delete del; } } #if CHIP_DEVICE_CONFIG_ENABLE_WPA CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBssId(MutableByteSpan & BssId) { constexpr size_t bssIdSize = 6; struct wlan_network current_network; VerifyOrReturnError(BssId.size() >= bssIdSize, CHIP_ERROR_BUFFER_TOO_SMALL); int ret = wlan_get_current_network(¤t_network); if (ret == WM_SUCCESS) { memcpy(BssId.data(), current_network.bssid, bssIdSize); BssId.reduce_size(bssIdSize); return CHIP_NO_ERROR; } return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiSecurityType(app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum & securityType) { using app::Clusters::WiFiNetworkDiagnostics::SecurityTypeEnum; struct wlan_network current_network; int ret = wlan_get_current_network(¤t_network); if (ret != WM_SUCCESS) { // Set as no security by default securityType = SecurityTypeEnum::kNone; return CHIP_NO_ERROR; } switch (current_network.security.type) { case WLAN_SECURITY_WEP_OPEN: case WLAN_SECURITY_WEP_SHARED: securityType = SecurityTypeEnum::kWep; break; case WLAN_SECURITY_WPA: securityType = SecurityTypeEnum::kWpa; break; case WLAN_SECURITY_WPA2: securityType = SecurityTypeEnum::kWpa2; break; case WLAN_SECURITY_WPA3_SAE: securityType = SecurityTypeEnum::kWpa3; break; case WLAN_SECURITY_NONE: default: // Default: No_security securityType = SecurityTypeEnum::kNone; } ChipLogProgress(DeviceLayer, "GetWiFiSecurityType: %u", to_underlying(securityType)); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiVersion(app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum & wifiVersion) { #if defined(CONFIG_11AX) wifiVersion = app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kAx; #elif defined(CONFIG_11AC) wifiVersion = app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kAc; #elif defined(CONFIG_11N) wifiVersion = app::Clusters::WiFiNetworkDiagnostics::WiFiVersionEnum::kN; #endif return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiChannelNumber(uint16_t & channelNumber) { channelNumber = wlan_get_current_channel(); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiRssi(int8_t & rssi) { short w_rssi; int err = wlan_get_current_rssi(&w_rssi); if (err != 0) { return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } rssi = static_cast(w_rssi); return CHIP_NO_ERROR; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconLostCount(uint32_t & beaconLostCount) { #ifdef CONFIG_WIFI_GET_LOG wlan_pkt_stats_t stats; int ret = wlan_get_log(&stats); if (ret == WM_SUCCESS) { beaconLostCount = stats.bcn_miss_cnt - mBeaconLostCount; return CHIP_NO_ERROR; } #endif /* CONFIG_WIFI_GET_LOG */ return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiBeaconRxCount(uint32_t & beaconRxCount) { #ifdef CONFIG_WIFI_GET_LOG wlan_pkt_stats_t stats; int ret = wlan_get_log(&stats); if (ret == WM_SUCCESS) { beaconRxCount = stats.bcn_rcv_cnt - mBeaconRxCount; return CHIP_NO_ERROR; } #endif /* CONFIG_WIFI_GET_LOG */ return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastRxCount(uint32_t & packetMulticastRxCount) { #ifdef CONFIG_WIFI_GET_LOG wlan_pkt_stats_t stats; int ret = wlan_get_log(&stats); if (ret == WM_SUCCESS) { packetMulticastRxCount = stats.mcast_rx_frame - mPacketMulticastRxCount; return CHIP_NO_ERROR; } #endif /* CONFIG_WIFI_GET_LOG */ return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketMulticastTxCount(uint32_t & packetMulticastTxCount) { #ifdef CONFIG_WIFI_GET_LOG wlan_pkt_stats_t stats; int ret = wlan_get_log(&stats); if (ret == WM_SUCCESS) { packetMulticastTxCount = stats.mcast_tx_frame - mPacketMulticastTxCount; return CHIP_NO_ERROR; } #endif /* CONFIG_WIFI_GET_LOG */ return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastTxCount(uint32_t & packetUnicastTxCount) { #ifdef CONFIG_WIFI_GET_LOG wlan_pkt_stats_t stats; int ret = wlan_get_log(&stats); if (ret == WM_SUCCESS) { packetUnicastTxCount = stats.tx_frame - mPacketUnicastTxCount; return CHIP_NO_ERROR; } #endif /* CONFIG_WIFI_GET_LOG */ return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } #if SDK_2_16_100 CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiPacketUnicastRxCount(uint32_t & packetUnicastRxCount) { #ifdef CONFIG_WIFI_GET_LOG wlan_pkt_stats_t stats; int ret = wlan_get_log(&stats); if (ret == WM_SUCCESS) { packetUnicastRxCount = stats.rx_unicast_cnt - mPacketUnicastRxCount; return CHIP_NO_ERROR; } #endif /* CONFIG_WIFI_GET_LOG */ return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } CHIP_ERROR DiagnosticDataProviderImpl::GetWiFiOverrunCount(uint64_t & overrunCount) { #ifdef CONFIG_WIFI_GET_LOG wlan_pkt_stats_t stats; int ret = wlan_get_log(&stats); if (ret == WM_SUCCESS) { overrunCount = (stats.tx_overrun_cnt + stats.rx_overrun_cnt) - mOverrunCount; return CHIP_NO_ERROR; } #endif /* CONFIG_WIFI_GET_LOG */ return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } #endif CHIP_ERROR DiagnosticDataProviderImpl::ResetWiFiNetworkDiagnosticsCounts(void) { #ifdef CONFIG_WIFI_GET_LOG wlan_pkt_stats_t stats; int ret = wlan_get_log(&stats); if (ret == WM_SUCCESS) { mPacketUnicastTxCount = stats.tx_frame; mPacketMulticastTxCount = stats.mcast_tx_frame; mPacketMulticastRxCount = stats.mcast_rx_frame; mBeaconRxCount = stats.bcn_rcv_cnt; mBeaconLostCount = stats.bcn_miss_cnt; #if SDK_2_16_100 mPacketUnicastRxCount = stats.rx_unicast_cnt; mOverrunCount = stats.tx_overrun_cnt + stats.rx_overrun_cnt; #endif return CHIP_NO_ERROR; } #endif /* CONFIG_WIFI_GET_LOG */ return CHIP_ERROR_UNSUPPORTED_CHIP_FEATURE; } #endif /* CHIP_DEVICE_CONFIG_ENABLE_WPA */ DiagnosticDataProvider & GetDiagnosticDataProviderImpl() { return DiagnosticDataProviderImpl::GetDefaultInstance(); } } // namespace DeviceLayer } // namespace chip