/*
*
* Copyright (c) 2020-2021 Project CHIP Authors
* Copyright (c) 2016-2017 Nest Labs, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* This is a unit test suite for chip::System::Timer,
* the part of the CHIP System Layer that implements timers.
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if CHIP_SYSTEM_CONFIG_USE_LWIP
#include
#include
#include
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP
using chip::ErrorStr;
using namespace chip::System;
template
class LayerEvents
{
public:
static bool HasServiceEvents() { return false; }
static void ServiceEvents(Layer & aLayer) {}
};
#if CHIP_SYSTEM_CONFIG_USE_SOCKETS || CHIP_SYSTEM_CONFIG_USE_NETWORK_FRAMEWORK
template
class LayerEvents::value>::type>
{
public:
static bool HasServiceEvents() { return true; }
static void ServiceEvents(Layer & aLayer)
{
LayerSocketsLoop & layer = static_cast(aLayer);
layer.PrepareEvents();
layer.WaitForEvents();
layer.HandleEvents();
}
};
#endif // CHIP_SYSTEM_CONFIG_USE_SOCKETS || CHIP_SYSTEM_CONFIG_USE_NETWORK_FRAMEWORK
#if CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_OPEN_THREAD_ENDPOINT
template
class LayerEvents::value>::type>
{
public:
static bool HasServiceEvents() { return true; }
static void ServiceEvents(Layer & aLayer)
{
LayerImplFreeRTOS & layer = static_cast(aLayer);
if (layer.IsInitialized())
{
layer.HandlePlatformTimer();
}
}
};
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP || CHIP_SYSTEM_CONFIG_USE_OPEN_THREAD_ENDPOINT
// Test input vector format.
static const uint32_t MAX_NUM_TIMERS = 1000;
namespace chip {
namespace System {
class TestSystemTimer : public ::testing::Test
{
public:
static void SetUpTestSuite()
{
ASSERT_EQ(::chip::Platform::MemoryInit(), CHIP_NO_ERROR);
#if CHIP_SYSTEM_CONFIG_USE_LWIP && (LWIP_VERSION_MAJOR == 2) && (LWIP_VERSION_MINOR == 0) && !(CHIP_SYSTEM_CONFIG_LWIP_SKIP_INIT)
static sys_mbox_t * sLwIPEventQueue = NULL;
sys_mbox_new(sLwIPEventQueue, 100);
tcpip_init(NULL, NULL);
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP && (LWIP_VERSION_MAJOR == 2) && (LWIP_VERSION_MINOR == 0) &&
// !(CHIP_SYSTEM_CONFIG_LWIP_SKIP_INIT)
mLayer.Init();
}
static void TearDownTestSuite()
{
mLayer.Shutdown();
#if CHIP_SYSTEM_CONFIG_USE_LWIP && (LWIP_VERSION_MAJOR == 2) && (LWIP_VERSION_MINOR == 0) && !(CHIP_SYSTEM_CONFIG_LWIP_SKIP_INIT)
tcpip_finish(NULL, NULL);
#endif // CHIP_SYSTEM_CONFIG_USE_LWIP && (LWIP_VERSION_MAJOR == 2) && (LWIP_VERSION_MINOR == 0) &&
// !(CHIP_SYSTEM_CONFIG_LWIP_SKIP_INIT)
::chip::Platform::MemoryShutdown();
}
template
static auto GetTimerPoolObject(T && pool)
{
return pool.mTimerPool;
}
static LayerImpl mLayer;
};
LayerImpl TestSystemTimer::mLayer;
static TestSystemTimer * gCurrentTestContext = nullptr;
class ScopedGlobalTestContext
{
public:
ScopedGlobalTestContext(TestSystemTimer * ctx) { gCurrentTestContext = ctx; }
~ScopedGlobalTestContext() { gCurrentTestContext = nullptr; }
};
static volatile bool sOverflowTestDone;
void TimerFailed(void * aState)
{
sOverflowTestDone = true;
FAIL() << "Timer failed";
}
void HandleTimerFailed(Layer * systemLayer, void * aState)
{
(void) systemLayer;
TimerFailed(aState);
}
void HandleTimer10Success(Layer * systemLayer, void * aState)
{
EXPECT_TRUE(true);
sOverflowTestDone = true;
}
TEST_F(TestSystemTimer, CheckOverflow)
{
if (!LayerEvents::HasServiceEvents())
return;
chip::System::Clock::Milliseconds32 timeout_overflow_0ms = chip::System::Clock::Milliseconds32(652835029);
chip::System::Clock::Milliseconds32 timeout_10ms = chip::System::Clock::Milliseconds32(10);
Layer & lSys = mLayer;
sOverflowTestDone = false;
lSys.StartTimer(timeout_overflow_0ms, HandleTimerFailed, this);
lSys.StartTimer(timeout_10ms, HandleTimer10Success, this);
while (!sOverflowTestDone)
{
LayerEvents::ServiceEvents(lSys);
}
lSys.CancelTimer(HandleTimerFailed, this);
// cb timer is cancelled by destructor
lSys.CancelTimer(HandleTimer10Success, this);
}
void HandleGreedyTimer(Layer * aLayer, void * aState)
{
static uint32_t sNumTimersHandled = 0;
EXPECT_LT(sNumTimersHandled, MAX_NUM_TIMERS);
if (sNumTimersHandled >= MAX_NUM_TIMERS)
{
return;
}
aLayer->StartTimer(chip::System::Clock::kZero, HandleGreedyTimer, aState);
sNumTimersHandled++;
}
TEST_F(TestSystemTimer, CheckStarvation)
{
if (!LayerEvents::HasServiceEvents())
return;
Layer & lSys = mLayer;
lSys.StartTimer(chip::System::Clock::kZero, HandleGreedyTimer, this);
LayerEvents::ServiceEvents(lSys);
}
TEST_F(TestSystemTimer, CheckOrder)
{
if (!LayerEvents::HasServiceEvents())
return;
Layer & systemLayer = mLayer;
struct TestState
{
void Record(char c)
{
size_t n = strlen(record);
if (n + 1 < sizeof(record))
{
record[n++] = c;
record[n] = 0;
}
}
static void A(Layer * layer, void * state) { static_cast(state)->Record('A'); }
static void B(Layer * layer, void * state) { static_cast(state)->Record('B'); }
static void C(Layer * layer, void * state) { static_cast(state)->Record('C'); }
static void D(Layer * layer, void * state) { static_cast(state)->Record('D'); }
char record[5] = { 0 };
};
TestState testState;
EXPECT_EQ(testState.record[0], 0);
Clock::ClockBase * const savedClock = &SystemClock();
Clock::Internal::MockClock mockClock;
Clock::Internal::SetSystemClockForTesting(&mockClock);
using namespace Clock::Literals;
systemLayer.StartTimer(300_ms, TestState::D, &testState);
systemLayer.StartTimer(100_ms, TestState::B, &testState);
systemLayer.StartTimer(200_ms, TestState::C, &testState);
systemLayer.StartTimer(0_ms, TestState::A, &testState);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_EQ(strcmp(testState.record, "A"), 0);
mockClock.AdvanceMonotonic(100_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_EQ(strcmp(testState.record, "AB"), 0);
mockClock.AdvanceMonotonic(200_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_EQ(strcmp(testState.record, "ABCD"), 0);
Clock::Internal::SetSystemClockForTesting(savedClock);
}
TEST_F(TestSystemTimer, CheckCancellation)
{
if (!LayerEvents::HasServiceEvents())
return;
Layer & systemLayer = mLayer;
struct TestState
{
TestState(Layer & aSystemLayer) : mSystemLayer(aSystemLayer) {}
void Record(char c)
{
size_t n = strlen(record);
if (n + 1 < sizeof(record))
{
record[n++] = c;
record[n] = 0;
}
}
static void A(Layer * layer, void * state)
{
auto self = static_cast(state);
self->Record('A');
self->mSystemLayer.CancelTimer(B, state);
self->mSystemLayer.CancelTimer(D, state);
}
static void B(Layer * layer, void * state) { static_cast(state)->Record('B'); }
static void C(Layer * layer, void * state)
{
auto self = static_cast(state);
self->Record('C');
self->mSystemLayer.CancelTimer(E, state);
}
static void D(Layer * layer, void * state) { static_cast(state)->Record('D'); }
static void E(Layer * layer, void * state) { static_cast(state)->Record('E'); }
char record[6] = { 0 };
Layer & mSystemLayer;
};
TestState testState(systemLayer);
EXPECT_EQ(testState.record[0], 0);
Clock::ClockBase * const savedClock = &SystemClock();
Clock::Internal::MockClock mockClock;
Clock::Internal::SetSystemClockForTesting(&mockClock);
using namespace Clock::Literals;
systemLayer.StartTimer(0_ms, TestState::A, &testState);
systemLayer.StartTimer(0_ms, TestState::B, &testState);
systemLayer.StartTimer(20_ms, TestState::C, &testState);
systemLayer.StartTimer(30_ms, TestState::D, &testState);
systemLayer.StartTimer(50_ms, TestState::E, &testState);
mockClock.AdvanceMonotonic(100_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_EQ(strcmp(testState.record, "AC"), 0);
Clock::Internal::SetSystemClockForTesting(savedClock);
}
namespace {
namespace CancelTimerTest {
// A bit lower than maximum system timers just in case, for systems that
// have some form of limit
constexpr unsigned kCancelTimerCount = CHIP_SYSTEM_CONFIG_NUM_TIMERS - 4;
int gCallbackProcessed[kCancelTimerCount];
/// Validates that gCallbackProcessed has valid values (0 or 1)
void ValidateExecutedTimerCounts()
{
for (int processed : gCallbackProcessed)
{
EXPECT_TRUE((processed == 0) || (processed == 1));
}
}
unsigned ExecutedTimerCount()
{
unsigned count = 0;
for (int processed : gCallbackProcessed)
{
if (processed != 0)
{
count++;
}
}
return count;
}
void Callback(Layer * layer, void * state)
{
unsigned idx = static_cast(reinterpret_cast(state));
if (gCallbackProcessed[idx] != 0)
{
ChipLogError(Test, "UNEXPECTED EXECUTION at index %u", idx);
}
gCallbackProcessed[idx]++;
if (ExecutedTimerCount() == kCancelTimerCount / 2)
{
ChipLogProgress(Test, "Cancelling timers");
for (unsigned i = 0; i < kCancelTimerCount; i++)
{
if (gCallbackProcessed[i] != 0)
{
continue;
}
ChipLogProgress(Test, "Timer %u is being cancelled", i);
gCurrentTestContext->mLayer.CancelTimer(Callback, reinterpret_cast(static_cast(i)));
gCallbackProcessed[i]++; // pretend executed.
}
}
}
TEST_F(TestSystemTimer, CancelTimerTest)
{
// Validates that timers can cancel other timers. Generally the test will
// do the following:
// - schedule several timers to start at the same time
// - within each timers, after half of them have run, make one timer
// cancel all the other ones
// - assert that:
// - timers will run if scheduled
// - once cancelled, timers will NOT run (i.e. a timer can cancel
// other timers, even if they are expiring at the same time)
memset(gCallbackProcessed, 0, sizeof(gCallbackProcessed));
// TestContext & testContext = *static_cast(aContext);
// ScopedGlobalTestContext testScope(&testContext);
Layer & systemLayer = mLayer;
Clock::ClockBase * const savedClock = &SystemClock();
Clock::Internal::MockClock mockClock;
Clock::Internal::SetSystemClockForTesting(&mockClock);
using namespace Clock::Literals;
for (unsigned i = 0; i < kCancelTimerCount; i++)
{
EXPECT_EQ(systemLayer.StartTimer(10_ms, Callback, reinterpret_cast(static_cast(i))), CHIP_NO_ERROR);
}
LayerEvents::ServiceEvents(systemLayer);
ValidateExecutedTimerCounts();
EXPECT_EQ(ExecutedTimerCount(), 0U);
mockClock.AdvanceMonotonic(20_ms);
LayerEvents::ServiceEvents(systemLayer);
ValidateExecutedTimerCounts();
EXPECT_EQ(ExecutedTimerCount(), kCancelTimerCount);
Clock::Internal::SetSystemClockForTesting(savedClock);
}
} // namespace CancelTimerTest
} // namespace
// Test the implementation helper classes TimerPool, TimerList, and TimerData.
TEST_F(TestSystemTimer, CheckTimerPool)
{
using Timer = TimerList::Node;
struct TestState
{
int count = 0;
static void Increment(Layer * layer, void * state) { ++static_cast(state)->count; }
static void Reset(Layer * layer, void * state) { static_cast(state)->count = 0; }
};
TestState testState;
using namespace Clock::Literals;
struct
{
Clock::Timestamp awakenTime;
TimerCompleteCallback onComplete;
Timer * timer;
} testTimer[] = {
{ 111_ms, TestState::Increment }, // 0
{ 100_ms, TestState::Increment }, // 1
{ 202_ms, TestState::Reset }, // 2
{ 303_ms, TestState::Increment }, // 3
};
TimerPool pool;
EXPECT_EQ(pool.mTimerPool.Allocated(), 0U);
SYSTEM_STATS_RESET(Stats::kSystemLayer_NumTimers);
SYSTEM_STATS_RESET_HIGH_WATER_MARK_FOR_TESTING(Stats::kSystemLayer_NumTimers);
EXPECT_TRUE(SYSTEM_STATS_TEST_IN_USE(Stats::kSystemLayer_NumTimers, 0));
EXPECT_TRUE(SYSTEM_STATS_TEST_HIGH_WATER_MARK(Stats::kSystemLayer_NumTimers, 0));
// Test TimerPool::Create() and TimerData accessors.
for (auto & timer : testTimer)
{
timer.timer = pool.Create(mLayer, timer.awakenTime, timer.onComplete, &testState);
}
EXPECT_TRUE(SYSTEM_STATS_TEST_IN_USE(Stats::kSystemLayer_NumTimers, 4));
for (auto & timer : testTimer)
{
ASSERT_NE(timer.timer, nullptr);
EXPECT_EQ(timer.timer->AwakenTime(), timer.awakenTime);
// TODO: Fix casting and use EXPECT_EQ
EXPECT_TRUE(timer.timer->GetCallback().GetOnComplete() == timer.onComplete);
EXPECT_EQ(timer.timer->GetCallback().GetAppState(), &testState);
EXPECT_EQ(timer.timer->GetCallback().GetSystemLayer(), &mLayer);
}
// Test TimerList operations.
TimerList list;
EXPECT_EQ(list.Remove(nullptr), nullptr);
EXPECT_EQ(list.Remove(nullptr, nullptr), nullptr);
EXPECT_EQ(list.PopEarliest(), nullptr);
EXPECT_EQ(list.PopIfEarlier(500_ms), nullptr);
EXPECT_EQ(list.Earliest(), nullptr);
EXPECT_TRUE(list.Empty());
Timer * earliest = list.Add(testTimer[0].timer); // list: () → (0) returns: 0
EXPECT_EQ(earliest, testTimer[0].timer);
EXPECT_EQ(list.PopIfEarlier(10_ms), nullptr);
EXPECT_EQ(list.Earliest(), testTimer[0].timer);
EXPECT_FALSE(list.Empty());
earliest = list.Add(testTimer[1].timer); // list: (0) → (1 0) returns: 1
EXPECT_EQ(earliest, testTimer[1].timer);
EXPECT_EQ(list.Earliest(), testTimer[1].timer);
earliest = list.Add(testTimer[2].timer); // list: (1 0) → (1 0 2) returns: 1
EXPECT_EQ(earliest, testTimer[1].timer);
EXPECT_EQ(list.Earliest(), testTimer[1].timer);
earliest = list.Add(testTimer[3].timer); // list: (1 0 2) → (1 0 2 3) returns: 1
EXPECT_EQ(earliest, testTimer[1].timer);
EXPECT_EQ(list.Earliest(), testTimer[1].timer);
earliest = list.Remove(earliest); // list: (1 0 2 3) → (0 2 3) returns: 0
EXPECT_EQ(earliest, testTimer[0].timer);
EXPECT_EQ(list.Earliest(), testTimer[0].timer);
earliest = list.Remove(TestState::Reset, &testState); // list: (0 2 3) → (0 3) returns: 2
EXPECT_EQ(earliest, testTimer[2].timer);
EXPECT_EQ(list.Earliest(), testTimer[0].timer);
earliest = list.PopEarliest(); // list: (0 3) → (3) returns: 0
EXPECT_EQ(earliest, testTimer[0].timer);
EXPECT_EQ(list.Earliest(), testTimer[3].timer);
earliest = list.PopIfEarlier(10_ms); // list: (3) → (3) returns: nullptr
EXPECT_EQ(earliest, nullptr);
earliest = list.PopIfEarlier(500_ms); // list: (3) → () returns: 3
EXPECT_EQ(earliest, testTimer[3].timer);
EXPECT_TRUE(list.Empty());
earliest = list.Add(testTimer[3].timer); // list: () → (3) returns: 3
list.Clear(); // list: (3) → ()
EXPECT_EQ(earliest, testTimer[3].timer);
EXPECT_TRUE(list.Empty());
for (auto & timer : testTimer)
{
list.Add(timer.timer);
}
TimerList early = list.ExtractEarlier(200_ms); // list: (1 0 2 3) → (2 3) returns: (1 0)
EXPECT_EQ(list.PopEarliest(), testTimer[2].timer);
EXPECT_EQ(list.PopEarliest(), testTimer[3].timer);
EXPECT_EQ(list.PopEarliest(), nullptr);
EXPECT_EQ(early.PopEarliest(), testTimer[1].timer);
EXPECT_EQ(early.PopEarliest(), testTimer[0].timer);
EXPECT_EQ(early.PopEarliest(), nullptr);
// Test TimerPool::Invoke()
EXPECT_EQ(testState.count, 0);
pool.Invoke(testTimer[0].timer);
testTimer[0].timer = nullptr;
EXPECT_EQ(testState.count, 1);
EXPECT_EQ(pool.mTimerPool.Allocated(), 3U);
EXPECT_TRUE(SYSTEM_STATS_TEST_IN_USE(Stats::kSystemLayer_NumTimers, 3));
// Test TimerPool::Release()
pool.Release(testTimer[1].timer);
testTimer[1].timer = nullptr;
EXPECT_EQ(testState.count, 1);
EXPECT_EQ(pool.mTimerPool.Allocated(), 2U);
EXPECT_TRUE(SYSTEM_STATS_TEST_IN_USE(Stats::kSystemLayer_NumTimers, 2));
pool.ReleaseAll();
EXPECT_EQ(pool.mTimerPool.Allocated(), 0U);
EXPECT_TRUE(SYSTEM_STATS_TEST_IN_USE(Stats::kSystemLayer_NumTimers, 0));
EXPECT_TRUE(SYSTEM_STATS_TEST_HIGH_WATER_MARK(Stats::kSystemLayer_NumTimers, 4));
}
TEST_F(TestSystemTimer, ExtendTimerToTest)
{
if (!LayerEvents::HasServiceEvents())
return;
Layer & systemLayer = mLayer;
struct TestState
{
void Record(char c)
{
size_t n = strlen(record);
if (n + 1 < sizeof(record))
{
record[n++] = c;
record[n] = 0;
}
}
static void A(Layer * layer, void * state) { static_cast(state)->Record('A'); }
static void B(Layer * layer, void * state) { static_cast(state)->Record('B'); }
static void C(Layer * layer, void * state) { static_cast(state)->Record('C'); }
static void D(Layer * layer, void * state) { static_cast(state)->Record('D'); }
char record[5] = { 0 };
};
TestState testState;
EXPECT_EQ(testState.record[0], 0);
Clock::ClockBase * const savedClock = &SystemClock();
Clock::Internal::MockClock mockClock;
Clock::Internal::SetSystemClockForTesting(&mockClock);
using namespace Clock::Literals;
systemLayer.StartTimer(150_ms, TestState::B, &testState);
systemLayer.StartTimer(200_ms, TestState::C, &testState);
systemLayer.StartTimer(150_ms, TestState::D, &testState);
// Timer wasn't started before. ExtendTimerTo will start it.
systemLayer.ExtendTimerTo(100_ms, TestState::A, &testState);
mockClock.AdvanceMonotonic(100_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_EQ(strcmp(testState.record, "A"), 0);
// Timer B as 50ms remaining. ExtendTimerTo 25 should have no effect
// Timer C as 100ms remaining. ExtendTimerTo 75ms should have no effect
// Timer D as 50ms remaining. Timer should be extend to a duration of 75ms
systemLayer.ExtendTimerTo(25_ms, TestState::B, &testState);
systemLayer.ExtendTimerTo(75_ms, TestState::D, &testState);
systemLayer.ExtendTimerTo(75_ms, TestState::D, &testState);
mockClock.AdvanceMonotonic(25_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_EQ(strcmp(testState.record, "A"), 0);
mockClock.AdvanceMonotonic(25_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_EQ(strcmp(testState.record, "AB"), 0);
// Timer D as 25ms remaining. Timer should be extend to a duration of 75ms
systemLayer.ExtendTimerTo(75_ms, TestState::D, &testState);
mockClock.AdvanceMonotonic(100_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_EQ(strcmp(testState.record, "ABCD"), 0);
Clock::Internal::SetSystemClockForTesting(savedClock);
// Extending a timer by 0 ms permitted
EXPECT_EQ(systemLayer.ExtendTimerTo(0_ms, TestState::A, &testState), CHIP_ERROR_INVALID_ARGUMENT);
}
TEST_F(TestSystemTimer, IsTimerActiveTest)
{
if (!LayerEvents::HasServiceEvents())
return;
Layer & systemLayer = mLayer;
struct TestState
{
void Record(char c)
{
size_t n = strlen(record);
if (n + 1 < sizeof(record))
{
record[n++] = c;
record[n] = 0;
}
}
static void A(Layer * layer, void * state) { static_cast(state)->Record('A'); }
static void B(Layer * layer, void * state) { static_cast(state)->Record('B'); }
static void C(Layer * layer, void * state) { static_cast(state)->Record('C'); }
char record[4] = { 0 };
};
TestState testState;
EXPECT_EQ(testState.record[0], 0);
Clock::ClockBase * const savedClock = &SystemClock();
Clock::Internal::MockClock mockClock;
Clock::Internal::SetSystemClockForTesting(&mockClock);
using namespace Clock::Literals;
systemLayer.StartTimer(100_ms, TestState::A, &testState);
systemLayer.StartTimer(200_ms, TestState::B, &testState);
systemLayer.StartTimer(300_ms, TestState::C, &testState);
EXPECT_TRUE(systemLayer.IsTimerActive(TestState::A, &testState));
EXPECT_TRUE(systemLayer.IsTimerActive(TestState::B, &testState));
EXPECT_TRUE(systemLayer.IsTimerActive(TestState::C, &testState));
mockClock.AdvanceMonotonic(100_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_FALSE(systemLayer.IsTimerActive(TestState::A, &testState));
EXPECT_TRUE(systemLayer.IsTimerActive(TestState::B, &testState));
EXPECT_TRUE(systemLayer.IsTimerActive(TestState::C, &testState));
mockClock.AdvanceMonotonic(100_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_FALSE(systemLayer.IsTimerActive(TestState::B, &testState));
EXPECT_TRUE(systemLayer.IsTimerActive(TestState::C, &testState));
mockClock.AdvanceMonotonic(100_ms);
LayerEvents::ServiceEvents(systemLayer);
EXPECT_FALSE(systemLayer.IsTimerActive(TestState::C, &testState));
Clock::Internal::SetSystemClockForTesting(savedClock);
}
} // namespace System
} // namespace chip