/* ** $Id: ltable.c,v 2.32.1.2 2007/12/28 15:32:23 roberto Exp $ ** Lua tables (hash) ** See Copyright Notice in lua.h */ /* ** Implementation of tables (aka arrays, objects, or hash tables). ** Tables keep its elements in two parts: an array part and a hash part. ** Non-negative integer keys are all candidates to be kept in the array ** part. The actual size of the array is the largest `n' such that at ** least half the slots between 0 and n are in use. ** Hash uses a mix of chained scatter table with Brent's variation. ** A main invariant of these tables is that, if an element is not ** in its main position (i.e. the `original' position that its hash gives ** to it), then the colliding element is in its own main position. ** Hence even when the load factor reaches 100%, performance remains good. */ #include #include #define ltable_c #define LUA_CORE #include "lua.h" #include "ldebug.h" #include "ldo.h" #include "lgc.h" #include "lmem.h" #include "lobject.h" #include "lstate.h" #include "ltable.h" /* ** max size of array part is 2^MAXBITS */ #if LUAI_BITSINT > 26 #define MAXBITS 26 #else #define MAXBITS (LUAI_BITSINT-2) #endif #define MAXASIZE (1 << MAXBITS) #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) #define hashstr(t,str) hashpow2(t, (str)->tsv.hash) #define hashboolean(t,p) hashpow2(t, p) /* ** for some types, it is better to avoid modulus by power of 2, as ** they tend to have many 2 factors. */ // 对某些类型而言,最好避免直接与2的次幂模操作取hash值,因为它们可能有很多2因子 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) #define hashpointer(t,p) hashmod(t, IntPoint(p)) /* ** number of ints inside a lua_Number */ #define numints cast_int(sizeof(lua_Number)/sizeof(int)) #define dummynode (&dummynode_) static const Node dummynode_ = { {{NULL}, LUA_TNIL}, /* value */ {{{NULL}, LUA_TNIL, NULL}} /* key */ }; /* ** hash for lua_Numbers */ // 对数字进行hash static Node *hashnum (const Table *t, lua_Number n) { unsigned int a[numints]; int i; if (luai_numeq(n, 0)) /* avoid problems with -0 */ return gnode(t, 0); memcpy(a, &n, sizeof(a)); for (i = 1; i < numints; i++) a[0] += a[i]; return hashmod(t, a[0]); } /* ** returns the `main' position of an element in a table (that is, the index ** of its hash value) */ // 根据key寻找在hash中的Node static Node *mainposition (const Table *t, const TValue *key) { switch (ttype(key)) { case LUA_TNUMBER: return hashnum(t, nvalue(key)); case LUA_TSTRING: return hashstr(t, rawtsvalue(key)); case LUA_TBOOLEAN: return hashboolean(t, bvalue(key)); case LUA_TLIGHTUSERDATA: return hashpointer(t, pvalue(key)); default: return hashpointer(t, gcvalue(key)); } } /* ** returns the index for `key' if `key' is an appropriate key to live in ** the array part of the table, -1 otherwise. */ // 在数组中寻找一个key, 如果找到则返回在数组中的索引, 否则返回-1 static int arrayindex (const TValue *key) { if (ttisnumber(key)) { lua_Number n = nvalue(key); int k; lua_number2int(k, n); if (luai_numeq(cast_num(k), n)) return k; } return -1; /* `key' did not match some condition */ } /* ** returns the index of a `key' for table traversals. First goes all ** elements in the array part, then elements in the hash part. The ** beginning of a traversal is signalled by -1. */ // 根据key寻找索引(无论是在数字还是hash中) static int findindex (lua_State *L, Table *t, StkId key) { int i; if (ttisnil(key)) return -1; /* first iteration */ // 首先在数组部分进行查找 i = arrayindex(key); // 如果index在数组范围内,则直接返回数组索引 if (0 < i && i <= t->sizearray) /* is `key' inside array part? */ // 返回的index需要-1是因为要跟C数组匹配上 return i-1; /* yes; that's the index (corrected to C) */ else { // 否则查找hash部分 Node *n = mainposition(t, key); do { /* check whether `key' is somewhere in the chain */ /* key may be dead already, but it is ok to use it in `next' */ if (luaO_rawequalObj(key2tval(n), key) || (ttype(gkey(n)) == LUA_TDEADKEY && iscollectable(key) && gcvalue(gkey(n)) == gcvalue(key))) { // 需要算出在hash部分中的偏移位置 i = cast_int(n - gnode(t, 0)); /* key index in hash table */ /* hash elements are numbered after array ones */ // 这个偏移位置还要加上数组部分的长度,以便区分 return i + t->sizearray; } // 没有找到的话,就继续寻找hash桶中的下一个元素 else n = gnext(n); } while (n); luaG_runerror(L, "invalid key to " LUA_QL("next")); /* key not found */ return 0; /* to avoid warnings */ } } // 根据key寻找下一个不为nil的元素, 找到返回1, int luaH_next (lua_State *L, Table *t, StkId key) { int i = findindex(L, t, key); /* find original element */ for (i++; i < t->sizearray; i++) { /* try first array part */ if (!ttisnil(&t->array[i])) { /* a non-nil value? */ // i + 1存入key中 setnvalue(key, cast_num(i+1)); // 将i的值复制到key + 1中(也就是i + 2) setobj2s(L, key+1, &t->array[i]); return 1; } } // 需要减去数组部分长度, // 这里居然使用的i++,不是node中的next,这不对吧???? // 换言之,这里取到的不是在同一个hash桶上的node for (i -= t->sizearray; i < sizenode(t); i++) { /* then hash part */ if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ setobj2s(L, key, key2tval(gnode(t, i))); setobj2s(L, key+1, gval(gnode(t, i))); return 1; } } return 0; /* no more elements */ } /* ** {============================================================= ** Rehash ** ============================================================== */ // 只有利用率超过50%的数组元素会进入数组,否则进去hash static int computesizes (int nums[], int *narray) { int i; int twotoi; /* 2^i */ int a = 0; /* number of elements smaller than 2^i */ int na = 0; /* number of elements to go to array part */ int n = 0; /* optimal size for array part */ // 这个循环完毕后,最重要的na存放的是数组部分的数据数量,而n是 // na满足这个条件:在 for (i = 0, twotoi = 1; twotoi/2 < *narray; i++, twotoi *= 2) { if (nums[i] > 0) { // 加上当前数量 a += nums[i]; // 如果数量已经超过半数, 那么数组的尺寸可以设置为这个大小 if (a > twotoi/2) { /* more than half elements present? */ n = twotoi; /* optimal size (till now) */ // 记录下当前的数组大小 na = a; /* all elements smaller than n will go to array part */ } } if (a == *narray) break; /* all elements already counted */ } *narray = n; lua_assert(*narray/2 <= na && na <= *narray); return na; } // 传入nums数组, 计算key是不是在2^(i-1) and 2^i范围内,如果是将nums相应的部分加一 // 返回0/1的依据是它是否落在合适的数组范围内 static int countint (const TValue *key, int *nums) { int k = arrayindex(key); if (0 < k && k <= MAXASIZE) { /* is `key' an appropriate array index? */ // 如果k在一个合理的范围内,将相应的nums加1 nums[ceillog2(k)]++; /* count as such */ return 1; } else return 0; } // 传入nums数组, 它的意义是:nums[i] = number of keys between 2^(i-1) and 2^i static int numusearray (const Table *t, int *nums) { int lg; int ttlg; /* 2^lg */ int ause = 0; /* summation of `nums' */ int i = 1; /* count to traverse all array keys */ for (lg=0, ttlg=1; lg<=MAXBITS; lg++, ttlg*=2) { /* for each slice */ int lc = 0; /* counter */ int lim = ttlg; if (lim > t->sizearray) { lim = t->sizearray; /* adjust upper limit */ if (i > lim) break; /* no more elements to count */ } /* count elements in range (2^(lg-1), 2^lg] */ for (; i <= lim; i++) { if (!ttisnil(&t->array[i-1])) lc++; } nums[lg] += lc; ause += lc; } return ause; } // 传入nums数组, 它的意义是:nums[i] = number of keys between 2^(i-1) and 2^i // 同时计算在hash中的整数数量,将数值更新到数组大小中 static int numusehash (const Table *t, int *nums, int *pnasize) { int totaluse = 0; /* total number of elements */ int ause = 0; /* summation of `nums' */ int i = sizenode(t); while (i--) { Node *n = &t->node[i]; if (!ttisnil(gval(n))) { ause += countint(key2tval(n), nums); totaluse++; } } *pnasize += ause; return totaluse; } // 初始化table的数组部分 static void setarrayvector (lua_State *L, Table *t, int size) { int i; // 为什么这里用的是luaM_reallocvector,而后面的setnodevector中使用的是luaM_newvector luaM_reallocvector(L, t->array, t->sizearray, size, TValue); for (i=t->sizearray; iarray[i]); t->sizearray = size; } // 初始化table的hash数组部分 static void setnodevector (lua_State *L, Table *t, int size) { int lsize; if (size == 0) { /* no elements to hash part? */ t->node = cast(Node *, dummynode); /* use common `dummynode' */ lsize = 0; } else { int i; // 为什么这里要计算log2,因为lsizenode就是log2值 lsize = ceillog2(size); // 过大了!! if (lsize > MAXBITS) luaG_runerror(L, "table overflow"); // 算原始值 size = twoto(lsize); // 以上的ceillog2和twoto操作将size转换为大于size且为2的次幂的最小的数 // 见setarrayvector中注释 t->node = luaM_newvector(L, size, Node); // 初始化每个hash成员 for (i=0; ilsizenode = cast_byte(lsize); t->lastfree = gnode(t, size); /* all positions are free */ } // 重新分配table的数组和hash部分的大小 static void resize (lua_State *L, Table *t, int nasize, int nhsize) { int i; int oldasize = t->sizearray; int oldhsize = t->lsizenode; Node *nold = t->node; /* save old hash ... */ // 如果新的数组部分大于老的数组部分,那么需要扩展数组尺寸 if (nasize > oldasize) /* array part must grow? */ setarrayvector(L, t, nasize); /* create new hash part with appropriate size */ setnodevector(L, t, nhsize); // 如果新的数组部分小于老的数组部分 if (nasize < oldasize) { /* array part must shrink? */ t->sizearray = nasize; /* re-insert elements from vanishing slice */ // 遍历多出来的那部分 for (i=nasize; iarray[i])) // 以i + 1为key, 将i的数据插入hash部分 setobjt2t(L, luaH_setnum(L, t, i+1), &t->array[i]); } /* shrink array */ // 缩减数组大小 luaM_reallocvector(L, t->array, oldasize, nasize, TValue); } /* re-insert elements from hash part */ // 为什么从后往前遍历插入呢? for (i = twoto(oldhsize) - 1; i >= 0; i--) { Node *old = nold+i; // 将原来不为nil的元素重新插入hash中 if (!ttisnil(gval(old))) setobjt2t(L, luaH_set(L, t, key2tval(old)), gval(old)); } // 释放旧的hash部分 if (nold != dummynode) luaM_freearray(L, nold, twoto(oldhsize), Node); /* free old array */ } // 数组部分重新分配 void luaH_resizearray (lua_State *L, Table *t, int nasize) { int nsize = (t->node == dummynode) ? 0 : sizenode(t); resize(L, t, nasize, nsize); } // 对table进行重新划分hash和数组部分的大小 static void rehash (lua_State *L, Table *t, const TValue *ek) { int nasize, na; // nums中存放的是key在2^(i-1), 2^i之间的元素数量 int nums[MAXBITS+1]; /* nums[i] = number of keys between 2^(i-1) and 2^i */ int i; int totaluse; // 首先清空nums数组 for (i=0; i<=MAXBITS; i++) nums[i] = 0; /* reset counts */ // 计算数组部分在每个范围中数据的数量,返回的nasize是数组部分数据的数量 nasize = numusearray(t, nums); /* count keys in array part */ totaluse = nasize; /* all those keys are integer keys */ // 计算hash中key的数量 totaluse += numusehash(t, nums, &nasize); /* count keys in hash part */ /* count extra key */ // 判断新key的范围 nasize += countint(ek, nums); totaluse++; /* compute new size for array part */ // 计算新的数组部分的大小 na = computesizes(nums, &nasize); // 重新分配table中数组和hash的大小 /* resize the table to new computed sizes */ resize(L, t, nasize, totaluse - na); } /* ** }============================================================= */ // 新分配table Table *luaH_new (lua_State *L, int narray, int nhash) { Table *t = luaM_new(L, Table); luaC_link(L, obj2gco(t), LUA_TTABLE); t->metatable = NULL; t->flags = cast_byte(~0); /* temporary values (kept only if some malloc fails) */ t->array = NULL; t->sizearray = 0; t->lsizenode = 0; t->node = cast(Node *, dummynode); setarrayvector(L, t, narray); setnodevector(L, t, nhash); return t; } // 释放table void luaH_free (lua_State *L, Table *t) { if (t->node != dummynode) luaM_freearray(L, t->node, sizenode(t), Node); luaM_freearray(L, t->array, t->sizearray, TValue); luaM_free(L, t); } // 在hash中寻找一个可用位置 static Node *getfreepos (Table *t) { while (t->lastfree-- > t->node) { if (ttisnil(gkey(t->lastfree))) return t->lastfree; } return NULL; /* could not find a free place */ } /* ** inserts a new key into a hash table; first, check whether key's main ** position is free. If not, check whether colliding node is in its main ** position or not: if it is not, move colliding node to an empty place and ** put new key in its main position; otherwise (colliding node is in its main ** position), new key goes to an empty position. */ // 向hash中插入一个新的key static TValue *newkey (lua_State *L, Table *t, const TValue *key) { // 根据key寻找在hash中的位置 Node *mp = mainposition(t, key); // 如果该位置上已经有数据了(!ttisnil(gval(mp)), 或者找不到位置(mp == dummynode) if (!ttisnil(gval(mp)) || mp == dummynode) { Node *othern; // 尝试着获取一个空闲位置 Node *n = getfreepos(t); /* get a free place */ // 找不到空闲位置? if (n == NULL) { /* cannot find a free place? */ rehash(L, t, key); /* grow table */ return luaH_set(L, t, key); /* re-insert key into grown table */ } lua_assert(n != dummynode); othern = mainposition(t, key2tval(mp)); if (othern != mp) { /* is colliding node out of its main position? */ /* yes; move colliding node into free position */ while (gnext(othern) != mp) othern = gnext(othern); /* find previous */ gnext(othern) = n; /* redo the chain with `n' in place of `mp' */ *n = *mp; /* copy colliding node into free pos. (mp->next also goes) */ gnext(mp) = NULL; /* now `mp' is free */ setnilvalue(gval(mp)); } else { /* colliding node is in its own main position */ /* new node will go into free position */ gnext(n) = gnext(mp); /* chain new position */ gnext(mp) = n; mp = n; } } gkey(mp)->value = key->value; gkey(mp)->tt = key->tt; luaC_barriert(L, t, key); lua_assert(ttisnil(gval(mp))); return gval(mp); } /* ** search function for integers */ // 以数字为key的查找函数 const TValue *luaH_getnum (Table *t, int key) { /* (1 <= key && key <= t->sizearray) */ // 只要比sizearray小,那么都在数组部分 if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray)) return &t->array[key-1]; else { // 否则在hash部分中 lua_Number nk = cast_num(key); Node *n = hashnum(t, nk); do { /* check whether `key' is somewhere in the chain */ if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk)) return gval(n); /* that's it */ else n = gnext(n); } while (n); return luaO_nilobject; } } /* ** search function for strings */ // 以字符串为key的查找函数 const TValue *luaH_getstr (Table *t, TString *key) { Node *n = hashstr(t, key); do { /* check whether `key' is somewhere in the chain */ if (ttisstring(gkey(n)) && rawtsvalue(gkey(n)) == key) return gval(n); /* that's it */ else n = gnext(n); } while (n); return luaO_nilobject; } /* ** main search function */ // 表查找的主函数,根据key类型进行区分 const TValue *luaH_get (Table *t, const TValue *key) { switch (ttype(key)) { case LUA_TNIL: return luaO_nilobject; case LUA_TSTRING: return luaH_getstr(t, rawtsvalue(key)); case LUA_TNUMBER: { int k; lua_Number n = nvalue(key); lua_number2int(k, n); if (luai_numeq(cast_num(k), nvalue(key))) /* index is int? */ return luaH_getnum(t, k); /* use specialized version */ /* else go through */ // 注意前面的不成功,再走近下面的hash部分 } default: { Node *n = mainposition(t, key); do { /* check whether `key' is somewhere in the chain */ if (luaO_rawequalObj(key2tval(n), key)) return gval(n); /* that's it */ else n = gnext(n); } while (n); return luaO_nilobject; } } } // 除了数字之外的key的set操作 TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { const TValue *p = luaH_get(t, key); t->flags = 0; if (p != luaO_nilobject) // 如果存在值, 则返回值 return cast(TValue *, p); else { if (ttisnil(key)) luaG_runerror(L, "table index is nil"); else if (ttisnumber(key) && luai_numisnan(nvalue(key))) luaG_runerror(L, "table index is NaN"); // 否则分配一个以key为key的新值 return newkey(L, t, key); } } // 以数字为key的set操作 TValue *luaH_setnum (lua_State *L, Table *t, int key) { const TValue *p = luaH_getnum(t, key); if (p != luaO_nilobject) // 如果原来有数据, 直接返回了 return cast(TValue *, p); else { // 否则没有的话, 新创建一个出来 TValue k; setnvalue(&k, cast_num(key)); return newkey(L, t, &k); } } // 以字符串为key的set操作 TValue *luaH_setstr (lua_State *L, Table *t, TString *key) { const TValue *p = luaH_getstr(t, key); if (p != luaO_nilobject) return cast(TValue *, p); else { TValue k; setsvalue(L, &k, key); return newkey(L, t, &k); } } static int unbound_search (Table *t, unsigned int j) { unsigned int i = j; /* i is zero or a present index */ j++; /* find `i' and `j' such that i is present and j is not */ while (!ttisnil(luaH_getnum(t, j))) { i = j; j *= 2; if (j > cast(unsigned int, MAX_INT)) { /* overflow? */ /* table was built with bad purposes: resort to linear search */ i = 1; while (!ttisnil(luaH_getnum(t, i))) i++; return i - 1; } } /* now do a binary search between them */ while (j - i > 1) { unsigned int m = (i+j)/2; if (ttisnil(luaH_getnum(t, m))) j = m; else i = m; } return i; } /* ** Try to find a boundary in table `t'. A `boundary' is an integer index ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). */ // 找到第一个"boundary"位置--它本身不为空, 而后一个元素为nil, int luaH_getn (Table *t) { // 首先取数组的大小 unsigned int j = t->sizearray; if (j > 0 && ttisnil(&t->array[j - 1])) { // 如果数组的最后一个元素为空 /* there is a boundary in the array part: (binary) search for it */ unsigned int i = 0; while (j - i > 1) { unsigned int m = (i+j)/2; if (ttisnil(&t->array[m - 1])) j = m; else i = m; } return i; } /* else must find a boundary in hash part */ else if (t->node == dummynode) /* hash part is empty? */ return j; /* that is easy... */ else return unbound_search(t, j); } #if defined(LUA_DEBUG) Node *luaH_mainposition (const Table *t, const TValue *key) { return mainposition(t, key); } int luaH_isdummy (Node *n) { return n == dummynode; } #endif